Note: Functions takingTensorarguments can also take anything accepted bytf.convert_to_tensor.
Note: Elementwise binary operations in TensorFlow follow numpy-style broadcasting.
TensorFlow provides several operations that you can use to add basic arithmetic operators to your graph.
tf.addtf.subtracttf.multiplytf.scalar_multf.divtf.dividetf.truedivtf.floordivtf.realdivtf.truncatedivtf.floor_divtf.truncatemodtf.floormodtf.modtf.crossTensorFlow provides several operations that you can use to add basic mathematical functions to your graph.
tf.add_ntf.abstf.negativetf.signtf.reciprocaltf.squaretf.roundtf.sqrttf.rsqrttf.powtf.exptf.expm1tf.logtf.log1ptf.ceiltf.floortf.maximumtf.minimumtf.costf.sintf.lbetatf.tantf.acostf.asintf.atantf.coshtf.sinhtf.asinhtf.acoshtf.atanhtf.lgammatf.digammatf.erftf.erfctf.squared_differencetf.igammatf.igammactf.zetatf.polygammatf.betainctf.rintTensorFlow provides several operations that you can use to add linear algebra functions on matrices to your graph.
tf.diagtf.diag_parttf.tracetf.transposetf.eyetf.matrix_diagtf.matrix_diag_parttf.matrix_band_parttf.matrix_set_diagtf.matrix_transposetf.matmultf.normtf.matrix_determinanttf.matrix_inversetf.choleskytf.cholesky_solvetf.matrix_solvetf.matrix_triangular_solvetf.matrix_solve_lstf.qrtf.self_adjoint_eigtf.self_adjoint_eigvalstf.svdTensorFlow provides operations that you can use to add tensor functions to your graph.
TensorFlow provides several operations that you can use to add complex number functions to your graph.
TensorFlow provides several operations that you can use to perform common math computations that reduce various dimensions of a tensor.
tf.reduce_sumtf.reduce_prodtf.reduce_mintf.reduce_maxtf.reduce_meantf.reduce_alltf.reduce_anytf.reduce_logsumexptf.count_nonzerotf.accumulate_ntf.einsumTensorFlow provides several operations that you can use to perform scans (running totals) across one axis of a tensor.
TensorFlow provides several operations that you can use to perform common math computations on tensor segments. Here a segmentation is a partitioning of a tensor along the first dimension, i.e. it defines a mapping from the first dimension onto segment_ids. The segment_ids tensor should be the size of the first dimension, d0, with consecutive IDs in the range 0 to k, where k<d0. In particular, a segmentation of a matrix tensor is a mapping of rows to segments.
For example:
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.segment_sum(c, tf.constant([0, 0, 1]))
==> [[0 0 0 0]
[5 6 7 8]]
tf.segment_sumtf.segment_prodtf.segment_mintf.segment_maxtf.segment_meantf.unsorted_segment_sumtf.sparse_segment_sumtf.sparse_segment_meantf.sparse_segment_sqrt_nTensorFlow provides several operations that you can use to add sequence comparison and index extraction to your graph. You can use these operations to determine sequence differences and determine the indexes of specific values in a tensor.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_guides/python/math_ops