Bijector Ops.
An API for invertible, differentiable transformations of random variables.
Differentiable, bijective transformations of continuous random variables alter the calculations made in the cumulative/probability distribution functions and sample function. This module provides a standard interface for making these manipulations.
For more details and examples, see the Bijector docstring.
To apply a Bijector, use distributions.TransformedDistribution.
tf.contrib.distributions.bijectors.Affinetf.contrib.distributions.bijectors.AffineLinearOperatortf.contrib.distributions.bijectors.Bijectortf.contrib.distributions.bijectors.Chaintf.contrib.distributions.bijectors.CholeskyOuterProducttf.contrib.distributions.bijectors.Exptf.contrib.distributions.bijectors.Identitytf.contrib.distributions.bijectors.Inlinetf.contrib.distributions.bijectors.Inverttf.contrib.distributions.bijectors.PowerTransformtf.contrib.distributions.bijectors.SoftmaxCenteredtf.contrib.distributions.bijectors.Softplus
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_guides/python/contrib.distributions.bijectors