#include <sparse_ops.h>
Converts a sparse representation into a dense tensor.
Builds an array dense with shape output_shape such that
dense[i] = (i == sparse_indices ? sparse_values : default_value)
dense[sparse_indices[i]] = sparse_values[i]
dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]
All other values in `dense` are set to `default_value`. If `sparse_values` is a
scalar, all sparse indices are set to this single value.
Indices should be sorted in lexicographic order, and indices must not contain any repeats. If `validate_indices` is true, these properties are checked during execution.
Arguments: * scope: A Scope object * sparse_indices: 0-D, 1-D, or 2-D. `sparse_indices[i]` contains the complete index where `sparse_values[i]` will be placed. * output_shape: 1-D. Shape of the dense output tensor. * sparse_values: 1-D. Values corresponding to each row of `sparse_indices`, or a scalar value to be used for all sparse indices. * default_value: Scalar value to set for indices not specified in `sparse_indices`.
Optional attributes (see `Attrs`): * validate_indices: If true, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats.
Returns:
* `Output`: Dense output tensor of shape `output_shape`. */
class SparseToDense {
public:
/// Optional attribute setters for SparseToDense
struct Attrs {
/** If true, indices are checked to make sure they are sorted in
lexicographic order and that there are no repeats.
Defaults to true */
TF_MUST_USE_RESULT Attrs ValidateIndices(bool x) {
Attrs ret = *this;
ret.validate_indices_ = x;
return ret;
}
bool validate_indices_ = true;
};
SparseToDense(const tensorflow::Scope& scope, tensorflow::Input
sparse_indices, tensorflow::Input output_shape,
tensorflow::Input sparse_values, tensorflow::Input
default_value);
SparseToDense(const tensorflow::Scope& scope, tensorflow::Input
sparse_indices, tensorflow::Input output_shape,
tensorflow::Input sparse_values, tensorflow::Input
default_value, const SparseToDense::Attrs& attrs);
operator ::tensorflow::Output() const { return dense; }
operator ::tensorflow::Input() const { return dense; }
::tensorflow::Node* node() const { return dense.node(); }
static Attrs ValidateIndices(bool x) {
return Attrs().ValidateIndices(x);
}
tensorflow::Output dense; };
/** Read `SparseTensors` from a `SparseTensorsMap` and concatenate them.
The input `sparse_handles` must be an `int64` matrix of shape `[N, 1]` where `N` is the minibatch size and the rows correspond to the output handles of `AddSparseToTensorsMap` or `AddManySparseToTensorsMap`. The ranks of the original `SparseTensor` objects that went into the given input ops must all match. When the final `SparseTensor` is created, it has rank one higher than the ranks of the incoming `SparseTensor` objects (they have been concatenated along a new row dimension on the left).
The output `SparseTensor` object's shape values for all dimensions but the first are the max across the input `SparseTensor` objects' shape values for the corresponding dimensions. Its first shape value is `N`, the minibatch size.
The input `SparseTensor` objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run `SparseReorder` to restore index ordering.
For example, if the handles represent an input, which is a `[2, 3]` matrix representing two original `SparseTensor` objects:index = [ 0] [10] [20] values = [1, 2, 3] shape = [50]
andindex = [ 2] [10] values = [4, 5] shape = [30]
then the final `SparseTensor` will be:index = [0 0] [0 10] [0 20] [1 2] [1 10] values = [1, 2, 3, 4, 5] shape = [2 50] ```
Arguments:
N serialized SparseTensor objects. Shape: [N].dtype of the SparseTensor objects stored in the SparseTensorsMap.Optional attributes (see Attrs):
SparseTensorsMap read by this op.SparseTensorsMap read by this op. It should not be blank; rather the shared_name or unique Operation name of the Op that created the original SparseTensorsMap should be used.Returns:
Output sparse_indices: 2-D. The indices of the minibatch SparseTensor.Output sparse_values: 1-D. The values of the minibatch SparseTensor.Output sparse_shape: 1-D. The shape of the minibatch SparseTensor. | Constructors and Destructors | |
|---|---|
TakeManySparseFromTensorsMap(const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype) | |
TakeManySparseFromTensorsMap(const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype, const TakeManySparseFromTensorsMap::Attrs & attrs) |
| Public attributes | |
|---|---|
sparse_indices | |
sparse_shape | |
sparse_values | |
| Public static functions | |
|---|---|
Container(StringPiece x) | |
SharedName(StringPiece x) | |
| Structs | |
|---|---|
| tensorflow::ops::TakeManySparseFromTensorsMap::Attrs | Optional attribute setters for TakeManySparseFromTensorsMap. |
::tensorflow::Output sparse_indices
::tensorflow::Output sparse_shape
::tensorflow::Output sparse_values
TakeManySparseFromTensorsMap( const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype )
TakeManySparseFromTensorsMap( const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype, const TakeManySparseFromTensorsMap::Attrs & attrs )
Attrs Container( StringPiece x )
Attrs SharedName( StringPiece x )
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/take-many-sparse-from-tensors-map.html