#include <sparse_ops.h>
Applies softmax to a batched N-D SparseTensor.
The inputs represent an N-D SparseTensor with logical shape [..., B, C] (where N >= 2), and with indices sorted in the canonical lexicographic order.
This op is equivalent to applying the normal tf.nn.softmax() to each innermost logical submatrix with shape [B, C], but with the catch that the implicitly zero elements do not participate. Specifically, the algorithm is equivalent to the following:
(1) Applies tf.nn.softmax() to a densified view of each innermost submatrix with shape [B, C], along the size-C dimension; (2) Masks out the original implicitly-zero locations; (3) Renormalizes the remaining elements.
Hence, the SparseTensor result has exactly the same non-zero indices and shape.
Arguments:
NNZ x R matrix with the indices of non-empty values in a SparseTensor, in canonical ordering.NNZ non-empty values corresponding to sp_indices.Returns:
Output: 1-D. The NNZ values for the result SparseTensor. | Constructors and Destructors | |
|---|---|
SparseSoftmax(const ::tensorflow::Scope & scope, ::tensorflow::Input sp_indices, ::tensorflow::Input sp_values, ::tensorflow::Input sp_shape) |
| Public attributes | |
|---|---|
output | |
| Public functions | |
|---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const | |
::tensorflow::Output output
SparseSoftmax( const ::tensorflow::Scope & scope, ::tensorflow::Input sp_indices, ::tensorflow::Input sp_values, ::tensorflow::Input sp_shape )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/sparse-softmax.html