#include <math_ops.h>
Compute the upper regularized incomplete Gamma function Q(a, x).
The upper regularized incomplete Gamma function is defined as:
\(Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)\)
where
\(Gamma(a, x) = int_{x}^{} t^{a-1} exp(-t) dt\)
is the upper incomplete Gama function.
Note, above P(a, x) (Igamma) is the lower regularized complete Gamma function.
Arguments:
Returns:
Output: The z tensor. | Constructors and Destructors | |
|---|---|
Igammac(const ::tensorflow::Scope & scope, ::tensorflow::Input a, ::tensorflow::Input x) |
| Public attributes | |
|---|---|
z | |
| Public functions | |
|---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const | |
::tensorflow::Output z
Igammac( const ::tensorflow::Scope & scope, ::tensorflow::Input a, ::tensorflow::Input x )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/igammac.html