#include <training_ops.h>
Update '*var' according to the adagrad scheme.
accum += grad * grad var -= lr * grad * (1 / sqrt(accum))
Arguments:
Optional attributes (see Attrs):
True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.Returns:
Output: Same as "var". | Constructors and Destructors | |
|---|---|
ApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad) | |
ApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, const ApplyAdagrad::Attrs & attrs) |
| Public attributes | |
|---|---|
out | |
| Public functions | |
|---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const | |
| Public static functions | |
|---|---|
UseLocking(bool x) | |
| Structs | |
|---|---|
| tensorflow::ops::ApplyAdagrad::Attrs | Optional attribute setters for ApplyAdagrad. |
::tensorflow::Output out
ApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad )
ApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, const ApplyAdagrad::Attrs & attrs )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
Attrs UseLocking( bool x )
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/apply-adagrad.html