sklearn.utils.resample(*arrays, **options) [source]
Resample arrays or sparse matrices in a consistent way
The default strategy implements one step of the bootstrapping procedure.
| Parameters: |
|
|---|---|
| Returns: |
|
| Other Parameters: | |
| |
See also
It is possible to mix sparse and dense arrays in the same run:
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])
>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)
>>> from sklearn.utils import resample
>>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
>>> X
array([[1., 0.],
[2., 1.],
[1., 0.]])
>>> X_sparse
<3x2 sparse matrix of type '<... 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>
>>> X_sparse.toarray()
array([[1., 0.],
[2., 1.],
[1., 0.]])
>>> y
array([0, 1, 0])
>>> resample(y, n_samples=2, random_state=0)
array([0, 1])
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html