class sklearn.semi_supervised.LabelPropagation(kernel=’rbf’, gamma=20, n_neighbors=7, alpha=None, max_iter=1000, tol=0.001, n_jobs=None) [source]
Label Propagation classifier
Read more in the User Guide.
| Parameters: |
|
|---|---|
| Attributes: |
|
See also
LabelSpreading
Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf
>>> import numpy as np >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> rng = np.random.RandomState(42) >>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3 >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... LabelPropagation(...)
fit(X, y) | |
get_params([deep]) | Get parameters for this estimator. |
predict(X) | Performs inductive inference across the model. |
predict_proba(X) | Predict probability for each possible outcome. |
score(X, y[, sample_weight]) | Returns the mean accuracy on the given test data and labels. |
set_params(**params) | Set the parameters of this estimator. |
__init__(kernel=’rbf’, gamma=20, n_neighbors=7, alpha=None, max_iter=1000, tol=0.001, n_jobs=None) [source]
get_params(deep=True) [source]
Get parameters for this estimator.
| Parameters: |
|
|---|---|
| Returns: |
|
predict(X) [source]
Performs inductive inference across the model.
| Parameters: |
|
|---|---|
| Returns: |
|
predict_proba(X) [source]
Predict probability for each possible outcome.
Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution).
| Parameters: |
|
|---|---|
| Returns: |
|
score(X, y, sample_weight=None) [source]
Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
| Parameters: |
|
|---|---|
| Returns: |
|
set_params(**params) [source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns: |
|
|---|
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelPropagation.html