class sklearn.preprocessing.OrdinalEncoder(categories=’auto’, dtype=<class ‘numpy.float64’>) [source]
Encode categorical features as an integer array.
The input to this transformer should be an array-like of integers or strings, denoting the values taken on by categorical (discrete) features. The features are converted to ordinal integers. This results in a single column of integers (0 to n_categories - 1) per feature.
Read more in the User Guide.
| Parameters: |
|
|---|---|
| Attributes: |
|
See also
sklearn.preprocessing.OneHotEncoder
sklearn.preprocessing.LabelEncoder
Given a dataset with two features, we let the encoder find the unique values per feature and transform the data to an ordinal encoding.
>>> from sklearn.preprocessing import OrdinalEncoder
>>> enc = OrdinalEncoder()
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
...
OrdinalEncoder(categories='auto', dtype=<... 'numpy.float64'>)
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 3], ['Male', 1]])
array([[0., 2.],
[1., 0.]])
>>> enc.inverse_transform([[1, 0], [0, 1]])
array([['Male', 1],
['Female', 2]], dtype=object)
fit(X[, y]) | Fit the OrdinalEncoder to X. |
fit_transform(X[, y]) | Fit to data, then transform it. |
get_params([deep]) | Get parameters for this estimator. |
inverse_transform(X) | Convert the data back to the original representation. |
set_params(**params) | Set the parameters of this estimator. |
transform(X) | Transform X to ordinal codes. |
__init__(categories=’auto’, dtype=<class ‘numpy.float64’>) [source]
fit(X, y=None) [source]
Fit the OrdinalEncoder to X.
| Parameters: |
|
|---|---|
| Returns: |
|
fit_transform(X, y=None, **fit_params) [source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
| Parameters: |
|
|---|---|
| Returns: |
|
get_params(deep=True) [source]
Get parameters for this estimator.
| Parameters: |
|
|---|---|
| Returns: |
|
inverse_transform(X) [source]
Convert the data back to the original representation.
| Parameters: |
|
|---|---|
| Returns: |
|
set_params(**params) [source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns: |
|
|---|
transform(X) [source]
Transform X to ordinal codes.
| Parameters: |
|
|---|---|
| Returns: |
|
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html