class sklearn.preprocessing.KernelCenterer [source]
Center a kernel matrix
Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False).
Read more in the User Guide.
>>> from sklearn.preprocessing import KernelCenterer
>>> from sklearn.metrics.pairwise import pairwise_kernels
>>> X = [[ 1., -2., 2.],
... [ -2., 1., 3.],
... [ 4., 1., -2.]]
>>> K = pairwise_kernels(X, metric='linear')
>>> K
array([[ 9., 2., -2.],
[ 2., 14., -13.],
[ -2., -13., 21.]])
>>> transformer = KernelCenterer().fit(K)
>>> transformer
KernelCenterer()
>>> transformer.transform(K)
array([[ 5., 0., -5.],
[ 0., 14., -14.],
[ -5., -14., 19.]])
fit(K[, y]) | Fit KernelCenterer |
fit_transform(X[, y]) | Fit to data, then transform it. |
get_params([deep]) | Get parameters for this estimator. |
set_params(**params) | Set the parameters of this estimator. |
transform(K[, y, copy]) | Center kernel matrix. |
__init__() [source]
fit(K, y=None) [source]
Fit KernelCenterer
| Parameters: |
|
|---|---|
| Returns: |
|
fit_transform(X, y=None, **fit_params) [source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
| Parameters: |
|
|---|---|
| Returns: |
|
get_params(deep=True) [source]
Get parameters for this estimator.
| Parameters: |
|
|---|---|
| Returns: |
|
set_params(**params) [source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns: |
|
|---|
transform(K, y=’deprecated’, copy=True) [source]
Center kernel matrix.
| Parameters: |
|
|---|---|
| Returns: |
|
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KernelCenterer.html