class sklearn.gaussian_process.kernels.WhiteKernel(noise_level=1.0, noise_level_bounds=(1e-05, 100000.0)) [source]
White kernel.
The main use-case of this kernel is as part of a sum-kernel where it explains the noise-component of the signal. Tuning its parameter corresponds to estimating the noise-level.
k(x_1, x_2) = noise_level if x_1 == x_2 else 0
New in version 0.18.
| Parameters: |
|
|---|---|
| Attributes: |
|
__call__(X[, Y, eval_gradient]) | Return the kernel k(X, Y) and optionally its gradient. |
clone_with_theta(theta) | Returns a clone of self with given hyperparameters theta. |
diag(X) | Returns the diagonal of the kernel k(X, X). |
get_params([deep]) | Get parameters of this kernel. |
is_stationary() | Returns whether the kernel is stationary. |
set_params(**params) | Set the parameters of this kernel. |
__init__(noise_level=1.0, noise_level_bounds=(1e-05, 100000.0)) [source]
__call__(X, Y=None, eval_gradient=False) [source]
Return the kernel k(X, Y) and optionally its gradient.
| Parameters: |
|
|---|---|
| Returns: |
|
bounds Returns the log-transformed bounds on the theta.
| Returns: |
|
|---|
clone_with_theta(theta) [source]
Returns a clone of self with given hyperparameters theta.
| Parameters: |
|
|---|
diag(X) [source]
Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
| Parameters: |
|
|---|---|
| Returns: |
|
get_params(deep=True) [source]
Get parameters of this kernel.
| Parameters: |
|
|---|---|
| Returns: |
|
hyperparameters Returns a list of all hyperparameter specifications.
is_stationary() [source]
Returns whether the kernel is stationary.
n_dims Returns the number of non-fixed hyperparameters of the kernel.
set_params(**params) [source]
Set the parameters of this kernel.
The method works on simple kernels as well as on nested kernels. The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns: |
|
|---|
theta Returns the (flattened, log-transformed) non-fixed hyperparameters.
Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale.
| Returns: |
|
|---|
sklearn.gaussian_process.kernels.WhiteKernel
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.WhiteKernel.html