class sklearn.feature_selection.SelectFpr(score_func=<function f_classif>, alpha=0.05) [source]
Filter: Select the pvalues below alpha based on a FPR test.
FPR test stands for False Positive Rate test. It controls the total amount of false detections.
Read more in the User Guide.
| Parameters: |
|
|---|---|
| Attributes: |
|
See also
f_classif
chi2
f_regression
mutual_info_regression
SelectPercentile
SelectKBest
SelectFdr
SelectFwe
GenericUnivariateSelect
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.feature_selection import SelectFpr, chi2 >>> X, y = load_breast_cancer(return_X_y=True) >>> X.shape (569, 30) >>> X_new = SelectFpr(chi2, alpha=0.01).fit_transform(X, y) >>> X_new.shape (569, 16)
fit(X, y) | Run score function on (X, y) and get the appropriate features. |
fit_transform(X[, y]) | Fit to data, then transform it. |
get_params([deep]) | Get parameters for this estimator. |
get_support([indices]) | Get a mask, or integer index, of the features selected |
inverse_transform(X) | Reverse the transformation operation |
set_params(**params) | Set the parameters of this estimator. |
transform(X) | Reduce X to the selected features. |
__init__(score_func=<function f_classif>, alpha=0.05) [source]
fit(X, y) [source]
Run score function on (X, y) and get the appropriate features.
| Parameters: |
|
|---|---|
| Returns: |
|
fit_transform(X, y=None, **fit_params) [source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
| Parameters: |
|
|---|---|
| Returns: |
|
get_params(deep=True) [source]
Get parameters for this estimator.
| Parameters: |
|
|---|---|
| Returns: |
|
get_support(indices=False) [source]
Get a mask, or integer index, of the features selected
| Parameters: |
|
|---|---|
| Returns: |
|
inverse_transform(X) [source]
Reverse the transformation operation
| Parameters: |
|
|---|---|
| Returns: |
|
set_params(**params) [source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns: |
|
|---|
transform(X) [source]
Reduce X to the selected features.
| Parameters: |
|
|---|---|
| Returns: |
|
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFpr.html