class sklearn.ensemble.RandomTreesEmbedding(n_estimators=’warn’, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, sparse_output=True, n_jobs=None, random_state=None, verbose=0, warm_start=False) [source]
An ensemble of totally random trees.
An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest.
The dimensionality of the resulting representation is n_out <= n_estimators * max_leaf_nodes. If max_leaf_nodes == None, the number of leaf nodes is at most n_estimators * 2 ** max_depth.
Read more in the User Guide.
| Parameters: |
|
|---|---|
| Attributes: |
|
| [1] | P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006. |
| [2] | Moosmann, F. and Triggs, B. and Jurie, F. “Fast discriminative visual codebooks using randomized clustering forests” NIPS 2007 |
apply(X) | Apply trees in the forest to X, return leaf indices. |
decision_path(X) | Return the decision path in the forest |
fit(X[, y, sample_weight]) | Fit estimator. |
fit_transform(X[, y, sample_weight]) | Fit estimator and transform dataset. |
get_params([deep]) | Get parameters for this estimator. |
set_params(**params) | Set the parameters of this estimator. |
transform(X) | Transform dataset. |
__init__(n_estimators=’warn’, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, sparse_output=True, n_jobs=None, random_state=None, verbose=0, warm_start=False) [source]
apply(X) [source]
Apply trees in the forest to X, return leaf indices.
| Parameters: |
|
|---|---|
| Returns: |
|
decision_path(X) [source]
Return the decision path in the forest
New in version 0.18.
| Parameters: |
|
|---|---|
| Returns: |
|
feature_importances_ | Returns: |
|
|---|
fit(X, y=None, sample_weight=None) [source]
Fit estimator.
| Parameters: |
|
|---|---|
| Returns: |
|
fit_transform(X, y=None, sample_weight=None) [source]
Fit estimator and transform dataset.
| Parameters: |
|
|---|---|
| Returns: |
|
get_params(deep=True) [source]
Get parameters for this estimator.
| Parameters: |
|
|---|---|
| Returns: |
|
set_params(**params) [source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns: |
|
|---|
transform(X) [source]
Transform dataset.
| Parameters: |
|
|---|---|
| Returns: |
|
sklearn.ensemble.RandomTreesEmbedding
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomTreesEmbedding.html