The implementation class of the set returned by keySet
.
The implementation class of the iterable returned by values
.
A class supporting filtered operations. Instances of this class are returned by method withFilter
.
The type implementing this traversable
Test two objects for inequality.
true
if !(this == that), false otherwise.
Equivalent to x.hashCode
except for boxed numeric types and null
. For numerics, it returns a hash value which is consistent with value equality: if two value type instances compare as true, then ## will produce the same hash value for each of them. For null
returns a hashcode where null.hashCode
throws a NullPointerException
.
a hash value consistent with ==
Creates a new map containing two or more key/value mappings and all the key/value mappings of this map.
Specified mappings will override existing mappings from this map with the same keys.
the type of the added values
the first element to add.
the second element to add.
the remaining elements to add.
a new map containing mappings of this map and two or more specified mappings.
Creates a new map containing a new key/value mapping and all the key/value mappings of this map.
Mapping kv
will override existing mappings from this map with the same key.
the type of the value in the key/value pair.
the key/value mapping to be added
a new map containing mappings of this map and the mapping kv
.
(Changed in version 2.8.0) +
creates a new map. Use +=
to add an element to this map and return that map itself.
Creates a new map containing the key/value mappings provided by the specified traversable object and all the key/value mappings of this map.
Note that existing mappings from this map with the same key as those in xs
will be overridden.
the type of the added values
the traversable object.
a new map containing mappings of this map and those provided by xs
.
Returns a new traversable collection containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the traversable collection is the most specific superclass encompassing the element types of the two operands.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is the same class as the current collection class Repr
, but this depends on the element type B
being admissible for that class, which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the traversable to append.
an implicit value of class CanBuildFrom
which determines the result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
which contains all elements of this traversable collection followed by all elements of that
.
As with ++
, returns a new collection containing the elements from the left operand followed by the elements from the right operand.
It differs from ++
in that the right operand determines the type of the resulting collection rather than the left one. Mnemonic: the COLon is on the side of the new COLlection type.
Example:
scala> val x = List(1) x: List[Int] = List(1) scala> val y = LinkedList(2) y: scala.collection.mutable.LinkedList[Int] = LinkedList(2) scala> val z = x ++: y z: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2)
This overload exists because: for the implementation of ++:
we should reuse that of ++
because many collections override it with more efficient versions.
Since TraversableOnce
has no ++
method, we have to implement that directly, but Traversable
and down can use the overload.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is the same class as the current collection class Repr
, but this depends on the element type B
being admissible for that class, which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the traversable to append.
an implicit value of class CanBuildFrom
which determines the result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
which contains all elements of this traversable collection followed by all elements of that
.
As with ++
, returns a new collection containing the elements from the left operand followed by the elements from the right operand.
It differs from ++
in that the right operand determines the type of the resulting collection rather than the left one. Mnemonic: the COLon is on the side of the new COLlection type.
Example:
scala> val x = List(1) x: List[Int] = List(1) scala> val y = LinkedList(2) y: scala.collection.mutable.LinkedList[Int] = LinkedList(2) scala> val z = x ++: y z: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2)
the element type of the returned collection.
the traversable to append.
a new synchronized map which contains all elements of this synchronized map followed by all elements of that
.
adds all elements produced by a TraversableOnce to this growable collection.
the TraversableOnce producing the elements to add.
the growable collection itself.
Adds a new key/value pair to this map. If the map already contains a mapping for the key, it will be overridden by the new value.
the key/value pair.
the map itself
adds two or more elements to this growable collection.
the first element to add.
the second element to add.
the remaining elements to add.
the growable collection itself
Creates a new map with all the key/value mappings of this map except mappings with keys equal to any of the two or more specified keys.
the first element to remove.
the second element to remove.
the remaining elements to remove.
a new map containing all the mappings of this map except mappings with a key equal to elem1
, elem2
or any of elems
.
(Changed in version 2.8.0) -
creates a new map. Use -=
to remove an element from this map and return that map itself.
Creates a new map with all the key/value mappings of this map except the key/value mapping with the specified key.
the key to be removed
a new map with all the mappings of this map except that with a key key
.
(Changed in version 2.8.0) -
creates a new map. Use -=
to remove an element from this map and return that map itself.
Creates a new map with all the key/value mappings of this map except mappings with keys equal to any of those provided by the specified traversable object.
the traversable object.
a new map with all the key/value mappings of this map except mappings with a key equal to a key from xs
.
(Changed in version 2.8.0) --
creates a new map. Use --=
to remove an element from this map and return that map itself.
Removes all elements produced by an iterator from this shrinkable collection.
the iterator producing the elements to remove.
the shrinkable collection itself
Removes a key from this map.
the key to be removed
the map itself.
Removes two or more elements from this shrinkable collection.
the first element to remove.
the second element to remove.
the remaining elements to remove.
the shrinkable collection itself
Applies a binary operator to a start value and all elements of this traversable or iterator, going left to right.
Note: /:
is alternate syntax for foldLeft
; z /: xs
is the same as xs foldLeft z
.
Examples:
Note that the folding function used to compute b is equivalent to that used to compute c.
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = (5 /: a)(_+_) b: Int = 15 scala> val c = (5 /: a)((x,y) => x + y) c: Int = 15
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this traversable or iterator, going left to right with the start value z
on the left:
op(...op(op(z, x_1), x_2), ..., x_n)
where x1, ..., xn
are the elements of this traversable or iterator.
Applies a binary operator to all elements of this traversable or iterator and a start value, going right to left.
Note: :\
is alternate syntax for foldRight
; xs :\ z
is the same as xs foldRight z
.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
Examples:
Note that the folding function used to compute b is equivalent to that used to compute c.
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = (a :\ 5)(_+_) b: Int = 15 scala> val c = (a :\ 5)((x,y) => x + y) c: Int = 15
the result type of the binary operator.
the start value
the binary operator
the result of inserting op
between consecutive elements of this traversable or iterator, going right to left with the start value z
on the right:
op(x_1, op(x_2, ... op(x_n, z)...))
where x1, ..., xn
are the elements of this traversable or iterator.
The expression x == that
is equivalent to if (x eq null) that eq null else x.equals(that)
.
true
if the receiver object is equivalent to the argument; false
otherwise.
Appends all bindings of this map to a string builder using start, end, and separator strings. The written text begins with the string start
and ends with the string end
. Inside, the string representations of all bindings of this map in the form of key -> value
are separated by the string sep
.
the builder to which strings are appended.
the starting string.
the separator string.
the ending string.
the string builder b
to which elements were appended.
Appends all elements of this traversable or iterator to a string builder. The written text consists of the string representations (w.r.t. the method toString
) of all elements of this traversable or iterator without any separator string.
Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> val h = a.addString(b) h: StringBuilder = 1234
the string builder to which elements are appended.
the string builder b
to which elements were appended.
Appends all elements of this traversable or iterator to a string builder using a separator string. The written text consists of the string representations (w.r.t. the method toString
) of all elements of this traversable or iterator, separated by the string sep
.
Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> a.addString(b, ", ") res0: StringBuilder = 1, 2, 3, 4
the string builder to which elements are appended.
the separator string.
the string builder b
to which elements were appended.
Aggregates the results of applying an operator to subsequent elements.
This is a more general form of fold
and reduce
. It is similar to foldLeft
in that it doesn't require the result to be a supertype of the element type. In addition, it allows parallel collections to be processed in chunks, and then combines the intermediate results.
aggregate
splits the traversable or iterator into partitions and processes each partition by sequentially applying seqop
, starting with z
(like foldLeft
). Those intermediate results are then combined by using combop
(like fold
). The implementation of this operation may operate on an arbitrary number of collection partitions (even 1), so combop
may be invoked an arbitrary number of times (even 0).
As an example, consider summing up the integer values of a list of chars. The initial value for the sum is 0. First, seqop
transforms each input character to an Int and adds it to the sum (of the partition). Then, combop
just needs to sum up the intermediate results of the partitions:
List('a', 'b', 'c').aggregate(0)({ (sum, ch) => sum + ch.toInt }, { (p1, p2) => p1 + p2 })
the type of accumulated results
the initial value for the accumulated result of the partition - this will typically be the neutral element for the seqop
operator (e.g. Nil
for list concatenation or 0
for summation) and may be evaluated more than once
an operator used to accumulate results within a partition
an associative operator used to combine results from different partitions
Composes this partial function with a transformation function that gets applied to results of this partial function.
the result type of the transformation function.
the transformation function
a partial function with the same domain as this partial function, which maps arguments x
to k(this(x))
.
Retrieves the value which is associated with the given key. This method invokes the default
method of the map if there is no mapping from the given key to a value. Unless overridden, the default
method throws a NoSuchElementException
.
the key
the value associated with the given key, or the result of the map's default
method, if none exists.
Applies this partial function to the given argument when it is contained in the function domain. Applies fallback function where this partial function is not defined.
Note that expression pf.applyOrElse(x, default)
is equivalent to
if(pf isDefinedAt x) pf(x) else default(x)
except that applyOrElse
method can be implemented more efficiently. For all partial function literals the compiler generates an applyOrElse
implementation which avoids double evaluation of pattern matchers and guards. This makes applyOrElse
the basis for the efficient implementation for many operations and scenarios, such as:
orElse
/andThen
chains does not lead to excessive apply
/isDefinedAt
evaluation
lift
and unlift
do not evaluate source functions twice on each invocation
runWith
allows efficient imperative-style combining of partial functions with conditionally applied actions For non-literal partial function classes with nontrivial isDefinedAt
method it is recommended to override applyOrElse
with custom implementation that avoids double isDefinedAt
evaluation. This may result in better performance and more predictable behavior w.r.t. side effects.
the function argument
the fallback function
the result of this function or fallback function application.
2.10
Cast the receiver object to be of type T0
.
Note that the success of a cast at runtime is modulo Scala's erasure semantics. Therefore the expression 1.asInstanceOf[String]
will throw a ClassCastException
at runtime, while the expression List(1).asInstanceOf[List[String]]
will not. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the requested type.
the receiver object.
ClassCastException
if the receiver object is not an instance of the erasure of type T0
.
Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind.
The object with which this iterable collection should be compared
true
, if this iterable collection can possibly equal that
, false
otherwise. The test takes into consideration only the run-time types of objects but ignores their elements.
Removes all bindings from the map. After this operation has completed, the map will be empty.
Create a copy of the receiver object.
The default implementation of the clone
method is platform dependent.
a copy of the receiver object.
not specified by SLS as a member of AnyRef
Builds a new collection by applying a partial function to all elements of this synchronized map on which the function is defined.
the element type of the returned collection.
the partial function which filters and maps the synchronized map.
a new synchronized map resulting from applying the given partial function pf
to each element on which it is defined and collecting the results. The order of the elements is preserved.
Finds the first element of the traversable or iterator for which the given partial function is defined, and applies the partial function to it.
Note: may not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the partial function
an option value containing pf applied to the first value for which it is defined, or None
if none exists.
Seq("a", 1, 5L).collectFirst({ case x: Int => x*10 }) = Some(10)
The factory companion object that builds instances of class Iterable. (or its Iterable
superclass where class Iterable is not a Seq
.)
Composes two instances of Function1 in a new Function1, with this function applied last.
the type to which function g
can be applied
a function A => T1
a new function f
such that f(x) == apply(g(x))
Tests whether this map contains a binding for a key.
the key
true
if there is a binding for key
in this map, false
otherwise.
Copies the elements of this synchronized map to an array. Fills the given array xs
with at most len
elements of this synchronized map, starting at position start
. Copying will stop once either the end of the current synchronized map is reached, or the end of the target array is reached, or len
elements have been copied.
the array to fill.
the starting index.
the maximal number of elements to copy.
Copies the elements of this synchronized map to an array. Fills the given array xs
with values of this synchronized map. Copying will stop once either the end of the current synchronized map is reached, or the end of the target array is reached.
the array to fill.
Copies the elements of this synchronized map to an array. Fills the given array xs
with values of this synchronized map, beginning at index start
. Copying will stop once either the end of the current synchronized map is reached, or the end of the target array is reached.
the array to fill.
the starting index.
Copies all elements of this traversable or iterator to a buffer.
Note: will not terminate for infinite-sized collections.
The buffer to which elements are copied.
Counts the number of elements in the traversable or iterator which satisfy a predicate.
the predicate used to test elements.
the number of elements satisfying the predicate p
.
Defines the default value computation for the map, returned when a key is not found The method implemented here throws an exception, but it might be overridden in subclasses.
the given key value for which a binding is missing.
Selects all elements except first n ones.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the number of elements to drop from this iterable collection.
a iterable collection consisting of all elements of this iterable collection except the first n
ones, or else the empty iterable collection, if this iterable collection has less than n
elements. If n
is negative, don't drop any elements.
Selects all elements except last n ones.
Note: might return different results for different runs, unless the underlying collection type is ordered.
The number of elements to take
a iterable collection consisting of all elements of this iterable collection except the last n
ones, or else the empty iterable collection, if this iterable collection has less than n
elements.
Drops longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the longest suffix of this traversable collection whose first element does not satisfy the predicate p
.
The empty map of the same type as this map
an empty map of type This
.
Tests whether the argument (that
) is a reference to the receiver object (this
).
The eq
method implements an equivalence relation on non-null instances of AnyRef
, and has three additional properties:
x
and y
of type AnyRef
, multiple invocations of x.eq(y)
consistently returns true
or consistently returns false
.For any non-null instance x
of type AnyRef
, x.eq(null)
and null.eq(x)
returns false
.
null.eq(null)
returns true
. When overriding the equals
or hashCode
methods, it is important to ensure that their behavior is consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2
), they should be equal to each other (o1 == o2
) and they should hash to the same value (o1.hashCode == o2.hashCode
).
true
if the argument is a reference to the receiver object; false
otherwise.
Compares two maps structurally; i.e., checks if all mappings contained in this map are also contained in the other map, and vice versa.
the other map
true
if both maps contain exactly the same mappings, false
otherwise.
Tests whether a predicate holds for at least one element of this iterable collection.
Note: may not terminate for infinite-sized collections.
the predicate used to test elements.
false
if this iterable collection is empty, otherwise true
if the given predicate p
holds for some of the elements of this iterable collection, otherwise false
Selects all elements of this traversable collection which satisfy a predicate.
the predicate used to test elements.
a new traversable collection consisting of all elements of this traversable collection that satisfy the given predicate p
. The order of the elements is preserved.
Filters this map by retaining only keys satisfying a predicate.
Note: the predicate must accept any key of type K
, not just those already present in the map, as the predicate is tested before the underlying map is queried.
the predicate used to test keys
an immutable map consisting only of those key value pairs of this map where the key satisfies the predicate p
. The resulting map wraps the original map without copying any elements.
Returns a new map obtained by removing all key/value pairs for which the predicate p
returns true
.
Note: This method works by successively removing elements for which the predicate is true from this set. If removal is slow, or you expect that most elements of the set will be removed, you might consider using filter
with a negated predicate instead.
A predicate over key-value pairs
A new map containing elements not satisfying the predicate.
Called by the garbage collector on the receiver object when there are no more references to the object.
The details of when and if the finalize
method is invoked, as well as the interaction between finalize
and non-local returns and exceptions, are all platform dependent.
not specified by SLS as a member of AnyRef
Finds the first element of the iterable collection satisfying a predicate, if any.
Note: may not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the predicate used to test elements.
an option value containing the first element in the iterable collection that satisfies p
, or None
if none exists.
Builds a new collection by applying a function to all elements of this synchronized map and using the elements of the resulting collections.
For example:
def getWords(lines: Seq[String]): Seq[String] = lines flatMap (line => line split "\\W+")
The type of the resulting collection is guided by the static type of synchronized map. This might cause unexpected results sometimes. For example:
// lettersOf will return a Seq[Char] of likely repeated letters, instead of a Set def lettersOf(words: Seq[String]) = words flatMap (word => word.toSet) // lettersOf will return a Set[Char], not a Seq def lettersOf(words: Seq[String]) = words.toSet flatMap (word => word.toSeq) // xs will be an Iterable[Int] val xs = Map("a" -> List(11,111), "b" -> List(22,222)).flatMap(_._2) // ys will be a Map[Int, Int] val ys = Map("a" -> List(1 -> 11,1 -> 111), "b" -> List(2 -> 22,2 -> 222)).flatMap(_._2)
the element type of the returned collection.
the function to apply to each element.
a new synchronized map resulting from applying the given collection-valued function f
to each element of this synchronized map and concatenating the results.
Converts this synchronized map of traversable collections into a synchronized map formed by the elements of these traversable collections.
The resulting collection's type will be guided by the static type of synchronized map. For example:
val xs = List( Set(1, 2, 3), Set(1, 2, 3) ).flatten // xs == List(1, 2, 3, 1, 2, 3) val ys = Set( List(1, 2, 3), List(3, 2, 1) ).flatten // ys == Set(1, 2, 3)
the type of the elements of each traversable collection.
a new synchronized map resulting from concatenating all element synchronized maps.
Folds the elements of this traversable or iterator using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
Note: will not terminate for infinite-sized collections.
a type parameter for the binary operator, a supertype of A
.
a neutral element for the fold operation; may be added to the result an arbitrary number of times, and must not change the result (e.g., Nil
for list concatenation, 0 for addition, or 1 for multiplication).
a binary operator that must be associative.
the result of applying the fold operator op
between all the elements and z
, or z
if this traversable or iterator is empty.
Applies a binary operator to a start value and all elements of this traversable or iterator, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this traversable or iterator, going left to right with the start value z
on the left:
op(...op(z, x_1), x_2, ..., x_n)
where x1, ..., xn
are the elements of this traversable or iterator. Returns z
if this traversable or iterator is empty.
Applies a binary operator to all elements of this iterable collection and a start value, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this iterable collection, going right to left with the start value z
on the right:
op(x_1, op(x_2, ... op(x_n, z)...))
where x1, ..., xn
are the elements of this iterable collection. Returns z
if this iterable collection is empty.
Tests whether a predicate holds for all elements of this iterable collection.
Note: may not terminate for infinite-sized collections.
the predicate used to test elements.
true
if this iterable collection is empty or the given predicate p
holds for all elements of this iterable collection, otherwise false
.
Applies a function f
to all elements of this synchronized map.
Note: this method underlies the implementation of most other bulk operations. Subclasses should re-implement this method if a more efficient implementation exists.
the function that is applied for its side-effect to every element. The result of function f
is discarded.
Returns string formatted according to given format
string. Format strings are as for String.format
(@see java.lang.String.format).
The generic builder that builds instances of Traversable at arbitrary element types.
Optionally returns the value associated with a key.
the key value
an option value containing the value associated with key
in this map, or None
if none exists.
Returns the runtime class representation of the object.
a class object corresponding to the runtime type of the receiver.
Returns the value associated with a key, or a default value if the key is not contained in the map.
the key.
a computation that yields a default value in case no binding for key
is found in the map.
the value associated with key
if it exists, otherwise the result of the default
computation.
If given key is already in this map, returns associated value.
Otherwise, computes value from given expression op
, stores with key in map and returns that value.
Concurrent map implementations may evaluate the expression op
multiple times, or may evaluate op
without inserting the result.
the key to test
the value associated with key (either previously or as a result of executing the method).
Partitions this traversable collection into a map of traversable collections according to some discriminator function.
Note: this method is not re-implemented by views. This means when applied to a view it will always force the view and return a new traversable collection.
the type of keys returned by the discriminator function.
the discriminator function.
A map from keys to traversable collections such that the following invariant holds:
(xs groupBy f)(k) = xs filter (x => f(x) == k)
That is, every key k
is bound to a traversable collection of those elements x
for which f(x)
equals k
.
Partitions elements in fixed size iterable collections.
the number of elements per group
An iterator producing iterable collections of size size
, except the last will be less than size size
if the elements don't divide evenly.
scala.collection.Iterator, method grouped
Tests whether this traversable collection is known to have a finite size. All strict collections are known to have finite size. For a non-strict collection such as Stream
, the predicate returns true
if all elements have been computed. It returns false
if the stream is not yet evaluated to the end. Non-empty Iterators usually return false
even if they were created from a collection with a known finite size.
Note: many collection methods will not work on collections of infinite sizes. The typical failure mode is an infinite loop. These methods always attempt a traversal without checking first that hasDefiniteSize
returns true
. However, checking hasDefiniteSize
can provide an assurance that size is well-defined and non-termination is not a concern.
true
if this collection is known to have finite size, false
otherwise.
The hashCode method for reference types. See hashCode in scala.Any.
the hash code value for this object.
Selects the first element of this iterable collection.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the first element of this iterable collection.
NoSuchElementException
if the iterable collection is empty.
Optionally selects the first element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the first element of this traversable collection if it is nonempty, None
if it is empty.
Selects all elements except the last.
Note: might return different results for different runs, unless the underlying collection type is ordered.
a traversable collection consisting of all elements of this traversable collection except the last one.
UnsupportedOperationException
if the traversable collection is empty.
Iterates over the inits of this traversable collection. The first value will be this traversable collection and the final one will be an empty traversable collection, with the intervening values the results of successive applications of init
.
an iterator over all the inits of this traversable collection
List(1,2,3).inits = Iterator(List(1,2,3), List(1,2), List(1), Nil)
Tests whether this map contains a binding for a key. This method, which implements an abstract method of trait PartialFunction
, is equivalent to contains
.
the key
true
if there is a binding for key
in this map, false
otherwise.
Tests whether the map is empty.
true
if the map does not contain any key/value binding, false
otherwise.
Test whether the dynamic type of the receiver object is T0
.
Note that the result of the test is modulo Scala's erasure semantics. Therefore the expression 1.isInstanceOf[String]
will return false
, while the expression List(1).isInstanceOf[List[String]]
will return true
. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the specified type.
true
if the receiver object is an instance of erasure of type T0
; false
otherwise.
Tests whether this traversable collection can be repeatedly traversed.
true
Creates a new iterator over all key/value pairs of this map
the new iterator
Collects all keys of this map in a set.
a set containing all keys of this map.
Collects all keys of this map in an iterable collection.
the keys of this map as an iterable.
(Changed in version 2.8.0) keys
returns Iterable[A]
rather than Iterator[A]
.
Creates an iterator for all keys.
an iterator over all keys.
Selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
The last element of this traversable collection.
NoSuchElementException
If the traversable collection is empty.
Optionally selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the last element of this traversable collection$ if it is nonempty, None
if it is empty.
Turns this partial function into a plain function returning an Option
result.
a function that takes an argument x
to Some(this(x))
if this
is defined for x
, and to None
otherwise.
Function.unlift
Builds a new collection by applying a function to all elements of this synchronized map.
the element type of the returned collection.
the function to apply to each element.
a new synchronized map resulting from applying the given function f
to each element of this synchronized map and collecting the results.
Creates a new builder by applying a transformation function to the results of this builder.
the type of collection returned by f
.
the transformation function.
a new builder which is the same as the current builder except that a transformation function is applied to this builder's result.
The original builder should no longer be used after mapResult
is called.
Transforms this map by applying a function to every retrieved value.
the function used to transform values of this map.
a map view which maps every key of this map to f(this(key))
. The resulting map wraps the original map without copying any elements.
Finds the largest element.
the largest element of this synchronized map.
UnsupportedOperationException
if this synchronized map is empty.
Finds the first element which yields the largest value measured by function f.
The result type of the function f.
The measuring function.
the first element of this synchronized map with the largest value measured by function f.
UnsupportedOperationException
if this synchronized map is empty.
Finds the smallest element.
the smallest element of this synchronized map
UnsupportedOperationException
if this synchronized map is empty.
Finds the first element which yields the smallest value measured by function f.
The result type of the function f.
The measuring function.
the first element of this synchronized map with the smallest value measured by function f.
UnsupportedOperationException
if this synchronized map is empty.
Displays all elements of this traversable or iterator in a string.
a string representation of this traversable or iterator. In the resulting string the string representations (w.r.t. the method toString
) of all elements of this traversable or iterator follow each other without any separator string.
Displays all elements of this traversable or iterator in a string using a separator string.
the separator string.
a string representation of this traversable or iterator. In the resulting string the string representations (w.r.t. the method toString
) of all elements of this traversable or iterator are separated by the string sep
.
List(1, 2, 3).mkString("|") = "1|2|3"
Displays all elements of this traversable or iterator in a string using start, end, and separator strings.
the starting string.
the separator string.
the ending string.
a string representation of this traversable or iterator. The resulting string begins with the string start
and ends with the string end
. Inside, the string representations (w.r.t. the method toString
) of all elements of this traversable or iterator are separated by the string sep
.
List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"
Equivalent to !(this eq that)
.
true
if the argument is not a reference to the receiver object; false
otherwise.
A common implementation of newBuilder
for all mutable maps in terms of empty
.
Overrides MapLike
implementation for better efficiency.
Tests whether the traversable or iterator is not empty.
true
if the traversable or iterator contains at least one element, false
otherwise.
Wakes up a single thread that is waiting on the receiver object's monitor.
not specified by SLS as a member of AnyRef
Wakes up all threads that are waiting on the receiver object's monitor.
not specified by SLS as a member of AnyRef
Composes this partial function with a fallback partial function which gets applied where this partial function is not defined.
the argument type of the fallback function
the result type of the fallback function
the fallback function
a partial function which has as domain the union of the domains of this partial function and that
. The resulting partial function takes x
to this(x)
where this
is defined, and to that(x)
where it is not.
Returns a parallel implementation of this collection.
For most collection types, this method creates a new parallel collection by copying all the elements. For these collection, par
takes linear time. Mutable collections in this category do not produce a mutable parallel collection that has the same underlying dataset, so changes in one collection will not be reflected in the other one.
Specific collections (e.g. ParArray
or mutable.ParHashMap
) override this default behaviour by creating a parallel collection which shares the same underlying dataset. For these collections, par
takes constant or sublinear time.
All parallel collections return a reference to themselves.
a parallel implementation of this collection
The default par
implementation uses the combiner provided by this method to create a new parallel collection.
a combiner for the parallel collection of type ParRepr
Partitions this traversable collection in two traversable collections according to a predicate.
the predicate on which to partition.
a pair of traversable collections: the first traversable collection consists of all elements that satisfy the predicate p
and the second traversable collection consists of all elements that don't. The relative order of the elements in the resulting traversable collections is the same as in the original traversable collection.
Multiplies up the elements of this collection.
the product of all elements in this synchronized map of numbers of type Int
. Instead of Int
, any other type T
with an implicit Numeric[T]
implementation can be used as element type of the synchronized map and as result type of product
. Examples of such types are: Long
, Float
, Double
, BigInt
.
Adds a new key/value pair to this map and optionally returns previously bound value. If the map already contains a mapping for the key, it will be overridden by the new value.
the key to update
the new value
an option value containing the value associated with the key before the put
operation was executed, or None
if key
was not defined in the map before.
Reduces the elements of this traversable or iterator using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
A type parameter for the binary operator, a supertype of A
.
A binary operator that must be associative.
The result of applying reduce operator op
between all the elements if the traversable or iterator is nonempty.
UnsupportedOperationException
if this traversable or iterator is empty.
Applies a binary operator to all elements of this traversable or iterator, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this traversable or iterator, going left to right:
op( op( ... op(x_1, x_2) ..., x_{n-1}), x_n)
where x1, ..., xn
are the elements of this traversable or iterator.
UnsupportedOperationException
if this traversable or iterator is empty.
Optionally applies a binary operator to all elements of this traversable or iterator, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceLeft(op)
if this traversable or iterator is nonempty, None
otherwise.
Reduces the elements of this traversable or iterator, if any, using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
A type parameter for the binary operator, a supertype of A
.
A binary operator that must be associative.
An option value containing result of applying reduce operator op
between all the elements if the collection is nonempty, and None
otherwise.
Applies a binary operator to all elements of this iterable collection, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this iterable collection, going right to left:
op(x_1, op(x_2, ..., op(x_{n-1}, x_n)...))
where x1, ..., xn
are the elements of this iterable collection.
UnsupportedOperationException
if this iterable collection is empty.
Optionally applies a binary operator to all elements of this traversable or iterator, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceRight(op)
if this traversable or iterator is nonempty, None
otherwise.
Removes a key from this map, returning the value associated previously with that key as an option.
the key to be removed
an option value containing the value associated previously with key
, or None
if key
was not defined in the map before.
The collection of type traversable collection underlying this TraversableLike
object. By default this is implemented as the TraversableLike
object itself, but this can be overridden.
The result when this map is used as a builder
the map representation itself.
Retains only those mappings for which the predicate p
returns true
.
The test predicate
Composes this partial function with an action function which gets applied to results of this partial function. The action function is invoked only for its side effects; its result is ignored.
Note that expression pf.runWith(action)(x)
is equivalent to
if(pf isDefinedAt x) { action(pf(x)); true } else false
except that runWith
is implemented via applyOrElse
and thus potentially more efficient. Using runWith
avoids double evaluation of pattern matchers and guards for partial function literals.
the action function
a function which maps arguments x
to isDefinedAt(x)
. The resulting function runs action(this(x))
where this
is defined.
2.10
applyOrElse
.
Checks if the other iterable collection contains the same elements in the same order as this synchronized map.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the collection to compare with.
true
, if both collections contain the same elements in the same order, false
otherwise.
Computes a prefix scan of the elements of the collection.
Note: The neutral element z
may be applied more than once.
element type of the resulting collection
type of the resulting collection
neutral element for the operator op
the associative operator for the scan
combiner factory which provides a combiner
a new traversable collection containing the prefix scan of the elements in this traversable collection
Produces a collection containing cumulative results of applying the operator going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the type of the elements in the resulting collection
the actual type of the resulting collection
the initial value
the binary operator applied to the intermediate result and the element
an implicit value of class CanBuildFrom
which determines the result class That
from the current representation type Repr
and the new element type B
.
collection with intermediate results
Produces a collection containing cumulative results of applying the operator going right to left. The head of the collection is the last cumulative result.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Example:
List(1, 2, 3, 4).scanRight(0)(_ + _) == List(10, 9, 7, 4, 0)
the type of the elements in the resulting collection
the actual type of the resulting collection
the initial value
the binary operator applied to the intermediate result and the element
an implicit value of class CanBuildFrom
which determines the result class That
from the current representation type Repr
and the new element type B
.
collection with intermediate results
(Changed in version 2.9.0) The behavior of scanRight
has changed. The previous behavior can be reproduced with scanRight.reverse.
A version of this collection with all of the operations implemented sequentially (i.e., in a single-threaded manner).
This method returns a reference to this collection. In parallel collections, it is redefined to return a sequential implementation of this collection. In both cases, it has O(1) complexity.
a sequential view of the collection.
The size of this synchronized map.
the number of elements in this synchronized map.
Gives a hint that one expects the result
of this builder to have the same size as the given collection, plus some delta. This will provide a hint only if the collection is known to have a cheap size
method. Currently this is assumed to be the case if and only if the collection is of type IndexedSeqLike
. Some builder classes will optimize their representation based on the hint. However, builder implementations are still required to work correctly even if the hint is wrong, i.e. a different number of elements is added.
the collection which serves as a hint for the result's size.
a correction to add to the coll.size
to produce the size hint.
Gives a hint that one expects the result
of this builder to have the same size as the given collection, plus some delta. This will provide a hint only if the collection is known to have a cheap size
method, which is determined by calling sizeHint
.
Some builder classes will optimize their representation based on the hint. However, builder implementations are still required to work correctly even if the hint is wrong, i.e. a different number of elements is added.
the collection which serves as a hint for the result's size.
Gives a hint how many elements are expected to be added when the next result
is called. Some builder classes will optimize their representation based on the hint. However, builder implementations are still required to work correctly even if the hint is wrong, i.e. a different number of elements is added.
the hint how many elements will be added.
Gives a hint how many elements are expected to be added when the next result
is called, together with an upper bound given by the size of some other collection. Some builder classes will optimize their representation based on the hint. However, builder implementations are still required to work correctly even if the hint is wrong, i.e. a different number of elements is added.
the hint how many elements will be added.
the bounding collection. If it is an IndexedSeqLike, then sizes larger than collection's size are reduced.
The size of this collection or iterator, if it can be cheaply computed
the number of elements in this collection or iterator, or -1 if the size cannot be determined cheaply
Selects an interval of elements. The returned collection is made up of all elements x
which satisfy the invariant:
from <= indexOf(x) < until
Note: might return different results for different runs, unless the underlying collection type is ordered.
a iterable collection containing the elements greater than or equal to index from
extending up to (but not including) index until
of this iterable collection.
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)
the number of elements per group
the distance between the first elements of successive groups
An iterator producing iterable collections of size size
, except the last element (which may be the only element) will be truncated if there are fewer than size
elements remaining to be grouped.
scala.collection.Iterator, method sliding
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped
.) The "sliding window" step is set to one.
the number of elements per group
An iterator producing iterable collections of size size
, except the last element (which may be the only element) will be truncated if there are fewer than size
elements remaining to be grouped.
scala.collection.Iterator, method sliding
Splits this traversable collection into a prefix/suffix pair according to a predicate.
Note: c span p
is equivalent to (but possibly more efficient than) (c takeWhile p, c dropWhile p)
, provided the evaluation of the predicate p
does not cause any side-effects.
Note: might return different results for different runs, unless the underlying collection type is ordered.
a pair consisting of the longest prefix of this traversable collection whose elements all satisfy p
, and the rest of this traversable collection.
Splits this traversable collection into two at a given position. Note: c splitAt n
is equivalent to (but possibly more efficient than) (c take n, c drop n)
.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the position at which to split.
a pair of traversable collections consisting of the first n
elements of this traversable collection, and the other elements.
Defines the prefix of this object's toString
representation.
a string representation which starts the result of toString
applied to this map. Unless overridden in subclasses, the string prefix of every map is "Map"
.
Sums up the elements of this collection.
the sum of all elements in this synchronized map of numbers of type Int
. Instead of Int
, any other type T
with an implicit Numeric[T]
implementation can be used as element type of the synchronized map and as result type of sum
. Examples of such types are: Long
, Float
, Double
, BigInt
.
Selects all elements except the first.
Note: might return different results for different runs, unless the underlying collection type is ordered.
a traversable collection consisting of all elements of this traversable collection except the first one.
java.lang.UnsupportedOperationException
if the traversable collection is empty.
Iterates over the tails of this traversable collection. The first value will be this traversable collection and the final one will be an empty traversable collection, with the intervening values the results of successive applications of tail
.
an iterator over all the tails of this traversable collection
List(1,2,3).tails = Iterator(List(1,2,3), List(2,3), List(3), Nil)
Selects first n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the number of elements to take from this iterable collection.
a iterable collection consisting only of the first n
elements of this iterable collection, or else the whole iterable collection, if it has less than n
elements. If n
is negative, returns an empty iterable collection.
Selects last n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the number of elements to take
a iterable collection consisting only of the last n
elements of this iterable collection, or else the whole iterable collection, if it has less than n
elements.
Takes longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the longest prefix of this iterable collection whose elements all satisfy the predicate p
.
The underlying collection seen as an instance of Iterable
. By default this is implemented as the current collection object itself, but this can be overridden.
Converts this synchronized map into another by copying all elements.
The collection type to build.
a new collection containing all elements of this synchronized map.
Converts this synchronized map to an array.
an array containing all elements of this synchronized map. An ClassTag
must be available for the element type of this synchronized map.
Uses the contents of this map to create a new mutable buffer.
a buffer containing all elements of this map.
A conversion from collections of type Repr
to Iterable
objects. By default this is implemented as just a cast, but this can be overridden.
Converts this traversable or iterator to an indexed sequence.
Note: will not terminate for infinite-sized collections.
an indexed sequence containing all elements of this traversable or iterator.
Returns this iterable collection as an iterable collection.
A new collection will not be built; lazy collections will stay lazy.
Note: will not terminate for infinite-sized collections.
an Iterable
containing all elements of this iterable collection.
Returns an Iterator over the elements in this iterable collection. Produces the same result as iterator
.
Note: will not terminate for infinite-sized collections.
an Iterator containing all elements of this iterable collection.
Converts this traversable or iterator to a list.
Note: will not terminate for infinite-sized collections.
a list containing all elements of this traversable or iterator.
Converts this synchronized map to a map. This method is unavailable unless the elements are members of Tuple2, each ((T, U)) becoming a key-value pair in the map. Duplicate keys will be overwritten by later keys: if this is an unordered collection, which key is in the resulting map is undefined.
a map of type immutable.Map[T, U]
containing all key/value pairs of type (T, U)
of this synchronized map.
Converts this mutable map to a sequence.
: assumes a fast Note
size
method. Subclasses should override if this is not true.
a sequence containing all elements of this mutable map.
Converts this traversable or iterator to a set.
Note: will not terminate for infinite-sized collections.
a set containing all elements of this traversable or iterator.
Converts this iterable collection to a stream.
a stream containing all elements of this iterable collection.
Converts this map to a string.
a string representation of this collection. By default this string consists of the stringPrefix
of this map, followed by all elements separated by commas and enclosed in parentheses.
Converts this traversable collection to an unspecified Traversable. Will return the same collection if this instance is already Traversable.
Note: will not terminate for infinite-sized collections.
a Traversable containing all elements of this traversable collection.
Converts this traversable or iterator to a Vector.
Note: will not terminate for infinite-sized collections.
a vector containing all elements of this traversable or iterator.
Applies a transformation function to all values contained in this map. The transformation function produces new values from existing keys associated values.
the transformation to apply
the map itself.
Transposes this collection of traversable collections into a collection of collections.
The resulting collection's type will be guided by the static type of collection. For example:
val xs = List( Set(1, 2, 3), Set(4, 5, 6)).transpose // xs == List( // List(1, 4), // List(2, 5), // List(3, 6)) val ys = Vector( List(1, 2, 3), List(4, 5, 6)).transpose // ys == Vector( // Vector(1, 4), // Vector(2, 5), // Vector(3, 6))
the type of the elements of each traversable collection.
an implicit conversion which asserts that the element type of this collection is a Traversable
.
a two-dimensional collection of collections which has as nth row the nth column of this collection.
(Changed in version 2.9.0) transpose
throws an IllegalArgumentException
if collections are not uniformly sized.
IllegalArgumentException
if all collections in this collection are not of the same size.
Converts this collection of pairs into two collections of the first and second half of each pair.
val xs = Traversable( (1, "one"), (2, "two"), (3, "three")).unzip // xs == (Traversable(1, 2, 3), // Traversable(one, two, three))
the type of the first half of the element pairs
the type of the second half of the element pairs
an implicit conversion which asserts that the element type of this collection is a pair.
a pair of collections, containing the first, respectively second half of each element pair of this collection.
Converts this collection of triples into three collections of the first, second, and third element of each triple.
val xs = Traversable( (1, "one", '1'), (2, "two", '2'), (3, "three", '3')).unzip3 // xs == (Traversable(1, 2, 3), // Traversable(one, two, three), // Traversable(1, 2, 3))
the type of the first member of the element triples
the type of the second member of the element triples
the type of the third member of the element triples
an implicit conversion which asserts that the element type of this collection is a triple.
a triple of collections, containing the first, second, respectively third member of each element triple of this collection.
Adds a new key/value pair to this map. If the map already contains a mapping for the key, it will be overridden by the new value.
The key to update
The new value
Creates a new map consisting of all key/value pairs of the current map plus a new pair of a given key and value.
the type of the added value
The key to add
The new value
A fresh immutable map with the binding from key
to value
added to this map.
Collects all values of this map in an iterable collection.
the values of this map as an iterable.
(Changed in version 2.8.0) values
returns Iterable[B]
rather than Iterator[B]
.
Creates an iterator for all values in this map.
an iterator over all values that are associated with some key in this map.
Creates a non-strict view of a slice of this iterable collection.
Note: the difference between view
and slice
is that view
produces a view of the current iterable collection, whereas slice
produces a new iterable collection.
Note: view(from, to)
is equivalent to view.slice(from, to)
Note: might return different results for different runs, unless the underlying collection type is ordered.
the index of the first element of the view
the index of the element following the view
a non-strict view of a slice of this iterable collection, starting at index from
and extending up to (but not including) index until
.
Creates a non-strict view of this iterable collection.
a non-strict view of this iterable collection.
The same map with a given default function.
Invoking transformer methods (e.g. map
) will not preserve the default value.
the function mapping keys to values, used for non-present keys
a wrapper of the map with a default value
The same map with a given default value.
Invoking transformer methods (e.g. map
) will not preserve the default value.
default value used for non-present keys
a wrapper of the map with a default value
Creates a non-strict filter of this traversable collection.
Note: the difference between c filter p
and c withFilter p
is that the former creates a new collection, whereas the latter only restricts the domain of subsequent map
, flatMap
, foreach
, and withFilter
operations.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the predicate used to test elements.
an object of class WithFilter
, which supports map
, flatMap
, foreach
, and withFilter
operations. All these operations apply to those elements of this traversable collection which satisfy the predicate p
.
Returns a synchronized map formed from this synchronized map and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the type of the second half of the returned pairs
The iterable providing the second half of each result pair
a new synchronized map containing pairs consisting of corresponding elements of this synchronized map and that
. The length of the returned collection is the minimum of the lengths of this synchronized map and that
.
Returns a synchronized map formed from this synchronized map and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the type of the second half of the returned pairs
The iterable providing the second half of each result pair
the element to be used to fill up the result if this synchronized map is shorter than that
.
the element to be used to fill up the result if that
is shorter than this synchronized map.
a new synchronized map containing pairs consisting of corresponding elements of this synchronized map and that
. The length of the returned collection is the maximum of the lengths of this synchronized map and that
. If this synchronized map is shorter than that
, thisElem
values are used to pad the result. If that
is shorter than this synchronized map, thatElem
values are used to pad the result.
Zips this synchronized map with its indices.
Note: might return different results for different runs, unless the underlying collection type is ordered.
A new synchronized map containing pairs consisting of all elements of this synchronized map paired with their index. Indices start at 0
.
List("a", "b", "c").zipWithIndex = List(("a", 0), ("b", 1), ("c", 2))
(synchronizedMap: any2stringadd[SynchronizedMap[A, B]]).+(other)
(synchronizedMap: MonadOps[(A, B)]).filter(p)
(synchronizedMap: MonadOps[(A, B)]).flatMap(f)
(synchronizedMap: MonadOps[(A, B)]).map(f)
(synchronizedMap: MonadOps[(A, B)]).withFilter(p)
© 2002-2019 EPFL, with contributions from Lightbend.
Licensed under the Apache License, Version 2.0.
https://www.scala-lang.org/api/2.12.9/scala/collection/mutable/SynchronizedMap.html
This class should be used as a mixin. It synchronizes the
Map
functions of the class into which it is mixed in.type of the keys contained in this map.
type of the values associated with keys.
(Since version 2.11.0) Synchronization via traits is deprecated as it is inherently unreliable. Consider java.util.concurrent.ConcurrentHashMap as an alternative.
1