W3cubDocs

/NumPy 1.17

numpy.zeros_like

numpy.zeros_like(a, dtype=None, order='K', subok=True, shape=None) [source]

Return an array of zeros with the same shape and type as a given array.

Parameters:
a : array_like

The shape and data-type of a define these same attributes of the returned array.

dtype : data-type, optional

Overrides the data type of the result.

New in version 1.6.0.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as closely as possible.

New in version 1.6.0.

subok : bool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True.

shape : int or sequence of ints, optional.

Overrides the shape of the result. If order=’K’ and the number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied.

New in version 1.17.0.

Returns:
out : ndarray

Array of zeros with the same shape and type as a.

See also

empty_like
Return an empty array with shape and type of input.
ones_like
Return an array of ones with shape and type of input.
full_like
Return a new array with shape of input filled with value.
zeros
Return a new array setting values to zero.

Examples

>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],
       [0, 0, 0]])
>>> y = np.arange(3, dtype=float)
>>> y
array([0., 1., 2.])
>>> np.zeros_like(y)
array([0.,  0.,  0.])

© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.zeros_like.html