numpy.split
-
numpy.split(ary, indices_or_sections, axis=0)
[source]
-
Split an array into multiple sub-arrays.
Parameters: |
-
ary : ndarray -
Array to be divided into sub-arrays. -
indices_or_sections : int or 1-D array -
If indices_or_sections is an integer, N, the array will be divided into N equal arrays along axis . If such a split is not possible, an error is raised. If indices_or_sections is a 1-D array of sorted integers, the entries indicate where along axis the array is split. For example, [2, 3] would, for axis=0 , result in If an index exceeds the dimension of the array along axis , an empty sub-array is returned correspondingly. -
axis : int, optional -
The axis along which to split, default is 0. |
Returns: |
-
sub-arrays : list of ndarrays -
A list of sub-arrays. |
Raises: |
- ValueError
-
If indices_or_sections is given as an integer, but a split does not result in equal division. |
See also
-
array_split
- Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception if an equal division cannot be made.
-
hsplit
- Split array into multiple sub-arrays horizontally (column-wise).
-
vsplit
- Split array into multiple sub-arrays vertically (row wise).
-
dsplit
- Split array into multiple sub-arrays along the 3rd axis (depth).
-
concatenate
- Join a sequence of arrays along an existing axis.
-
stack
- Join a sequence of arrays along a new axis.
-
hstack
- Stack arrays in sequence horizontally (column wise).
-
vstack
- Stack arrays in sequence vertically (row wise).
-
dstack
- Stack arrays in sequence depth wise (along third dimension).
Examples
>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
[array([0., 1., 2.]),
array([3., 4.]),
array([5.]),
array([6., 7.]),
array([], dtype=float64)]