W3cubDocs

/NumPy 1.17

numpy.spacing

numpy.spacing(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'spacing'>

Return the distance between x and the nearest adjacent number.

Parameters:
x : array_like

Values to find the spacing of.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default out=None, locations within it where the condition is False will remain uninitialized.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:
out : ndarray or scalar

The spacing of values of x. This is a scalar if x is a scalar.

Notes

It can be considered as a generalization of EPS: spacing(np.float64(1)) == np.finfo(np.float64).eps, and there should not be any representable number between x + spacing(x) and x for any finite x.

Spacing of +- inf and NaN is NaN.

Examples

>>> np.spacing(1) == np.finfo(np.float64).eps
True

© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.spacing.html