class numpy.memmap
[source]
Create a memory-map to an array stored in a binary file on disk.
Memory-mapped files are used for accessing small segments of large files on disk, without reading the entire file into memory. NumPy’s memmap’s are array-like objects. This differs from Python’s mmap
module, which uses file-like objects.
This subclass of ndarray has some unpleasant interactions with some operations, because it doesn’t quite fit properly as a subclass. An alternative to using this subclass is to create the mmap
object yourself, then create an ndarray with ndarray.__new__ directly, passing the object created in its ‘buffer=’ parameter.
This class may at some point be turned into a factory function which returns a view into an mmap buffer.
Delete the memmap instance to close the memmap file.
Parameters: |
|
---|
See also
lib.format.open_memmap
.npy
file.The memmap object can be used anywhere an ndarray is accepted. Given a memmap fp
, isinstance(fp, numpy.ndarray)
returns True
.
Memory-mapped files cannot be larger than 2GB on 32-bit systems.
When a memmap causes a file to be created or extended beyond its current size in the filesystem, the contents of the new part are unspecified. On systems with POSIX filesystem semantics, the extended part will be filled with zero bytes.
>>> data = np.arange(12, dtype='float32') >>> data.resize((3,4))
This example uses a temporary file so that doctest doesn’t write files to your directory. You would use a ‘normal’ filename.
>>> from tempfile import mkdtemp >>> import os.path as path >>> filename = path.join(mkdtemp(), 'newfile.dat')
Create a memmap with dtype and shape that matches our data:
>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4)) >>> fp memmap([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]], dtype=float32)
Write data to memmap array:
>>> fp[:] = data[:] >>> fp memmap([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]], dtype=float32)
>>> fp.filename == path.abspath(filename) True
Deletion flushes memory changes to disk before removing the object:
>>> del fp
Load the memmap and verify data was stored:
>>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4)) >>> newfp memmap([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]], dtype=float32)
Read-only memmap:
>>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4)) >>> fpr.flags.writeable False
Copy-on-write memmap:
>>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4)) >>> fpc.flags.writeable True
It’s possible to assign to copy-on-write array, but values are only written into the memory copy of the array, and not written to disk:
>>> fpc memmap([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]], dtype=float32) >>> fpc[0,:] = 0 >>> fpc memmap([[ 0., 0., 0., 0.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]], dtype=float32)
File on disk is unchanged:
>>> fpr memmap([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]], dtype=float32)
Offset into a memmap:
>>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16) >>> fpo memmap([ 4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)
Attributes: |
|
---|
flush (self) | Write any changes in the array to the file on disk. |
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.memmap.html