numpy.linalg.tensorinv(a, ind=2)
[source]
Compute the ‘inverse’ of an N-dimensional array.
The result is an inverse for a
relative to the tensordot operation tensordot(a, b, ind)
, i. e., up to floating-point accuracy, tensordot(tensorinv(a), a, ind)
is the “identity” tensor for the tensordot operation.
Parameters: |
|
---|---|
Returns: |
|
Raises: |
|
See also
>>> a = np.eye(4*6) >>> a.shape = (4, 6, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) >>> b = np.random.randn(4, 6) >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True
>>> a = np.eye(4*6) >>> a.shape = (24, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) >>> b = np.random.randn(24) >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.linalg.tensorinv.html