numpy.linalg.cond(x, p=None)
[source]
Compute the condition number of a matrix.
This function is capable of returning the condition number using one of seven different norms, depending on the value of p
(see Parameters below).
Parameters: |
| ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: |
|
See also
The condition number of x
is defined as the norm of x
times the norm of the inverse of x
[1]; the norm can be the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms.
[1] | G. Strang, Linear Algebra and Its Applications, Orlando, FL, Academic Press, Inc., 1980, pg. 285. |
>>> from numpy import linalg as LA >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) >>> a array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) >>> LA.cond(a) 1.4142135623730951 >>> LA.cond(a, 'fro') 3.1622776601683795 >>> LA.cond(a, np.inf) 2.0 >>> LA.cond(a, -np.inf) 1.0 >>> LA.cond(a, 1) 2.0 >>> LA.cond(a, -1) 1.0 >>> LA.cond(a, 2) 1.4142135623730951 >>> LA.cond(a, -2) 0.70710678118654746 # may vary >>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0)) 0.70710678118654746 # may vary
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.linalg.cond.html