class numpy.lib.mixins.NDArrayOperatorsMixin
[source]
Mixin defining all operator special methods using __array_ufunc__.
This class implements the special methods for almost all of Python’s builtin operators defined in the operator
module, including comparisons (==
, >
, etc.) and arithmetic (+
, *
, -
, etc.), by deferring to the __array_ufunc__
method, which subclasses must implement.
It is useful for writing classes that do not inherit from numpy.ndarray
, but that should support arithmetic and numpy universal functions like arrays as described in A Mechanism for Overriding Ufuncs.
As an trivial example, consider this implementation of an ArrayLike
class that simply wraps a NumPy array and ensures that the result of any arithmetic operation is also an ArrayLike
object:
class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin): def __init__(self, value): self.value = np.asarray(value) # One might also consider adding the built-in list type to this # list, to support operations like np.add(array_like, list) _HANDLED_TYPES = (np.ndarray, numbers.Number) def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): out = kwargs.get('out', ()) for x in inputs + out: # Only support operations with instances of _HANDLED_TYPES. # Use ArrayLike instead of type(self) for isinstance to # allow subclasses that don't override __array_ufunc__ to # handle ArrayLike objects. if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)): return NotImplemented # Defer to the implementation of the ufunc on unwrapped values. inputs = tuple(x.value if isinstance(x, ArrayLike) else x for x in inputs) if out: kwargs['out'] = tuple( x.value if isinstance(x, ArrayLike) else x for x in out) result = getattr(ufunc, method)(*inputs, **kwargs) if type(result) is tuple: # multiple return values return tuple(type(self)(x) for x in result) elif method == 'at': # no return value return None else: # one return value return type(self)(result) def __repr__(self): return '%s(%r)' % (type(self).__name__, self.value)
In interactions between ArrayLike
objects and numbers or numpy arrays, the result is always another ArrayLike
:
>>> x = ArrayLike([1, 2, 3]) >>> x - 1 ArrayLike(array([0, 1, 2])) >>> 1 - x ArrayLike(array([ 0, -1, -2])) >>> np.arange(3) - x ArrayLike(array([-1, -1, -1])) >>> x - np.arange(3) ArrayLike(array([1, 1, 1]))
Note that unlike numpy.ndarray
, ArrayLike
does not allow operations with arbitrary, unrecognized types. This ensures that interactions with ArrayLike preserve a well-defined casting hierarchy.
New in version 1.13.
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.lib.mixins.NDArrayOperatorsMixin.html