numpy.exp(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'exp'>
Calculate the exponential of all elements in the input array.
Parameters: |
|
---|---|
Returns: |
|
See also
The irrational number e
is also known as Euler’s number. It is approximately 2.718281, and is the base of the natural logarithm, ln
(this means that, if , then . For real input, exp(x)
is always positive.
For complex arguments, x = a + ib
, we can write . The first term, , is already known (it is the real argument, described above). The second term, , is , a function with magnitude 1 and a periodic phase.
[1] | Wikipedia, “Exponential function”, https://en.wikipedia.org/wiki/Exponential_function |
[2] | M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,” Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm |
Plot the magnitude and phase of exp(x)
in the complex plane:
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2*np.pi, 2*np.pi, 100) >>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane >>> out = np.exp(xx)
>>> plt.subplot(121) >>> plt.imshow(np.abs(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray') >>> plt.title('Magnitude of exp(x)')
>>> plt.subplot(122) >>> plt.imshow(np.angle(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv') >>> plt.title('Phase (angle) of exp(x)') >>> plt.show()
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.exp.html