numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)
[source]
Estimate a covariance matrix, given data and weights.
Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, , then the covariance matrix element is the covariance of and . The element is the variance of .
See the notes for an outline of the algorithm.
Parameters: |
|
---|---|
Returns: |
|
See also
corrcoef
Assume that the observations are in the columns of the observation array m
and let f = fweights
and a = aweights
for brevity. The steps to compute the weighted covariance are as follows:
>>> m = np.arange(10, dtype=np.float64) >>> f = np.arange(10) * 2 >>> a = np.arange(10) ** 2. >>> ddof = 9 # N - 1 >>> w = f * a >>> v1 = np.sum(w) >>> v2 = np.sum(w * a) >>> m -= np.sum(m * w, axis=None, keepdims=True) / v1 >>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)
Note that when a == 1
, the normalization factor v1 / (v1**2 - ddof * v2)
goes over to 1 / (np.sum(f) - ddof)
as it should.
Consider two variables, and , which correlate perfectly, but in opposite directions:
>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T >>> x array([[0, 1, 2], [2, 1, 0]])
Note how increases while decreases. The covariance matrix shows this clearly:
>>> np.cov(x) array([[ 1., -1.], [-1., 1.]])
Note that element , which shows the correlation between and , is negative.
Further, note how x
and y
are combined:
>>> x = [-2.1, -1, 4.3] >>> y = [3, 1.1, 0.12] >>> X = np.stack((x, y), axis=0) >>> np.cov(X) array([[11.71 , -4.286 ], # may vary [-4.286 , 2.144133]]) >>> np.cov(x, y) array([[11.71 , -4.286 ], # may vary [-4.286 , 2.144133]]) >>> np.cov(x) array(11.71)
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.cov.html