numpy.asarray_chkfinite
-
numpy.asarray_chkfinite(a, dtype=None, order=None)
[source]
-
Convert the input to an array, checking for NaNs or Infs.
Parameters: |
-
a : array_like -
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs. -
dtype : data-type, optional -
By default, the data-type is inferred from the input data. -
order : {‘C’, ‘F’}, optional -
Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’. |
Returns: |
-
out : ndarray -
Array interpretation of a . No copy is performed if the input is already an ndarray. If a is a subclass of ndarray, a base class ndarray is returned. |
Raises: |
- ValueError
-
Raises ValueError if a contains NaN (Not a Number) or Inf (Infinity). |
See also
-
asarray
- Create and array.
-
asanyarray
- Similar function which passes through subclasses.
-
ascontiguousarray
- Convert input to a contiguous array.
-
asfarray
- Convert input to a floating point ndarray.
-
asfortranarray
- Convert input to an ndarray with column-major memory order.
-
fromiter
- Create an array from an iterator.
-
fromfunction
- Construct an array by executing a function on grid positions.
Examples
Convert a list into an array. If all elements are finite asarray_chkfinite
is identical to asarray
.
>>> a = [1, 2]
>>> np.asarray_chkfinite(a, dtype=float)
array([1., 2.])
Raises ValueError if array_like contains Nans or Infs.
>>> a = [1, 2, np.inf]
>>> try:
... np.asarray_chkfinite(a)
... except ValueError:
... print('ValueError')
...
ValueError