numpy.asanyarray
-
numpy.asanyarray(a, dtype=None, order=None)
[source]
-
Convert the input to an ndarray, but pass ndarray subclasses through.
Parameters: |
-
a : array_like -
Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays. -
dtype : data-type, optional -
By default, the data-type is inferred from the input data. -
order : {‘C’, ‘F’}, optional -
Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’. |
Returns: |
-
out : ndarray or an ndarray subclass -
Array interpretation of a . If a is an ndarray or a subclass of ndarray, it is returned as-is and no copy is performed. |
See also
-
asarray
- Similar function which always returns ndarrays.
-
ascontiguousarray
- Convert input to a contiguous array.
-
asfarray
- Convert input to a floating point ndarray.
-
asfortranarray
- Convert input to an ndarray with column-major memory order.
-
asarray_chkfinite
- Similar function which checks input for NaNs and Infs.
-
fromiter
- Create an array from an iterator.
-
fromfunction
- Construct an array by executing a function on grid positions.
Examples
Convert a list into an array:
>>> a = [1, 2]
>>> np.asanyarray(a)
array([1, 2])
Instances of ndarray
subclasses are passed through as-is:
>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
>>> np.asanyarray(a) is a
True