| Copyright | (c) Andy Gill 2001 (c) Oregon Graduate Institute of Science and Technology 2002 |
|---|---|
| License | BSD-style (see the file libraries/base/LICENSE) |
| Maintainer | [email protected] |
| Stability | experimental |
| Portability | portable |
| Safe Haskell | Trustworthy |
| Language | Haskell2010 |
Monadic fixpoints.
For a detailed discussion, see Levent Erkok's thesis, Value Recursion in Monadic Computations, Oregon Graduate Institute, 2002.
class Monad m => MonadFix m where Source
Monads having fixed points with a 'knot-tying' semantics. Instances of MonadFix should satisfy the following laws:
mfix (return . h) = return (fix h)mfix (\x -> a >>= \y -> f x y) = a >>= \y -> mfix (\x -> f x y)mfix (liftM h . f) = liftM h (mfix (f . h)), for strict h.mfix (\x -> mfix (\y -> f x y)) = mfix (\x -> f x x)This class is used in the translation of the recursive do notation supported by GHC and Hugs.
mfix :: (a -> m a) -> m a Source
The fixed point of a monadic computation. mfix f executes the action f only once, with the eventual output fed back as the input. Hence f should not be strict, for then mfix f would diverge.
| MonadFix [] | Since: base-2.1 |
Defined in Control.Monad.Fix | |
| MonadFix Maybe | Since: base-2.1 |
Defined in Control.Monad.Fix | |
| MonadFix IO | Since: base-2.1 |
Defined in Control.Monad.Fix | |
| MonadFix Par1 | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix NonEmpty | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix Down | Since: base-4.12.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix Product | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix Sum | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix Dual | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix Last | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix First | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
| MonadFix Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
| MonadFix Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
| MonadFix First | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
| MonadFix Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
| MonadFix Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
| MonadFix (Either e) | Since: base-4.3.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix (ST s) | Since: base-2.1 |
Defined in Control.Monad.Fix | |
| MonadFix (ST s) | Since: base-2.1 |
Defined in Control.Monad.ST.Lazy.Imp | |
| MonadFix f => MonadFix (Rec1 f) | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix f => MonadFix (Alt f) | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix f => MonadFix (Ap f) | Since: base-4.12.0.0 |
Defined in Control.Monad.Fix | |
| MonadFix ((->) r :: Type -> Type) | Since: base-2.1 |
Defined in Control.Monad.Fix | |
| (MonadFix f, MonadFix g) => MonadFix (f :*: g) | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix | |
| (MonadFix f, MonadFix g) => MonadFix (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
| MonadFix f => MonadFix (M1 i c f) | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix | |
fix f is the least fixed point of the function f, i.e. the least defined x such that f x = x.
For example, we can write the factorial function using direct recursion as
>>> let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5 120
This uses the fact that Haskell’s let introduces recursive bindings. We can rewrite this definition using fix,
>>> fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5 120
Instead of making a recursive call, we introduce a dummy parameter rec; when used within fix, this parameter then refers to fix' argument, hence the recursion is reintroduced.
© The University of Glasgow and others
Licensed under a BSD-style license (see top of the page).
https://downloads.haskell.org/~ghc/8.6.1/docs/html/libraries/base-4.12.0.0/Control-Monad-Fix.html