A one-stop shop for converting values from one type to another.
| Category | Functions |
|---|---|
| Generic | asOriginalType castFrom emplace parse to toChars |
| Strings | text wtext dtext hexString |
| Numeric | octal roundTo signed unsigned |
| Exceptions | ConvException ConvOverflowException |
Thrown on conversion errors.
import std.exception : assertThrown;
assertThrown!ConvException(to!int("abc"));
Thrown on conversion overflow errors.
import std.exception : assertThrown; assertThrown!ConvOverflowException(to!ubyte(1_000_000));
The to template converts a value from one type to another. The source type is deduced and the target type must be specified, for example the expression to!int(42.0) converts the number 42 from double to int. The conversion is "safe", i.e., it checks for overflow; to!int(4.2e10) would throw the ConvOverflowException exception. Overflow checks are only inserted when necessary, e.g., to!double(42) does not do any checking because any int fits in a double.
Conversions from string to numeric types differ from the C equivalents atoi() and atol() by checking for overflow and not allowing whitespace.
For conversion of strings to signed types, the grammar recognized is:
Integer: Sign UnsignedInteger
UnsignedInteger
Sign:
+
- UnsignedInteger:
DecimalDigit
DecimalDigit UnsignedInteger int a = 42; int b = to!int(a); double c = to!double(3.14); // c is double with value 3.14
roundTo.) import std.exception : assertThrown; int a = 420; writeln(to!long(a)); // a assertThrown!ConvOverflowException(to!byte(a)); writeln(to!int(4.2e6)); // 4200000 assertThrown!ConvOverflowException(to!uint(-3.14)); writeln(to!uint(3.14)); // 3 writeln(to!uint(3.99)); // 3 writeln(to!int(-3.99)); // -3
auto str = to!string(42, 16); writeln(str); // "2A" auto i = to!int(str, 16); writeln(i); // 42
2^24-1 for float, 2^53-1 for double, and 2^64-1 for real (when real is 80-bit, e.g. on Intel machines). // 2^24 - 1, largest proper integer representable as float int a = 16_777_215; writeln(to!int(to!float(a))); // a writeln(to!int(to!float(-a))); // -a
ConvException is thrown. import std.exception : assertThrown;
writeln(to!char("a")); // 'a'
assertThrown(to!char("ñ")); // 'ñ' does not fit into a char
writeln(to!wchar("ñ")); // 'ñ'
assertThrown(to!wchar("😃")); // '😃' does not fit into a wchar
writeln(to!dchar("😃")); // '😃'
// Using wstring or dstring as source type does not affect the result
writeln(to!char("a"w)); // 'a'
writeln(to!char("a"d)); // 'a'
// Two code points cannot be converted to a single one
assertThrown(to!char("ab"));
import std.string : split; int[] a = [1, 2, 3]; auto b = to!(float[])(a); writeln(b); // [1.0f, 2, 3] string str = "1 2 3 4 5 6"; auto numbers = to!(double[])(split(str)); writeln(numbers); // [1.0, 2, 3, 4, 5, 6] int[string] c; c["a"] = 1; c["b"] = 2; auto d = to!(double[wstring])(c); assert(d["a"w] == 1 && d["b"w] == 2);
to!short applies to an int, to!wstring applies to a string, to!string applies to a double, and to!(double[]) applies to an int[]. The conversion might throw an exception because to!short might fail the range check. int[string][double[int[]]] a; auto b = to!(short[wstring][string[double[]]])(a);
import std.exception : assertThrown;
// Testing object conversions
class A {}
class B : A {}
class C : A {}
A a1 = new A, a2 = new B, a3 = new C;
assert(to!B(a2) is a2);
assert(to!C(a3) is a3);
assertThrown!ConvException(to!B(a3));
char, wchar, dchar) character widths and any combination of qualifiers (mutable, const, or immutable).to!T.to!T.toString against the object or returns "null" if the object is null.toString against the struct if it is defined.toString, the conversion to string produces the list of fields."true" or "false".char, wchar, dchar to a string type.size_t value. If pointer is char*, treat it as C-style strings. In that case, this function is @system.// Conversion representing dynamic/static array with string
long[] a = [ 1, 3, 5 ];
writeln(to!string(a)); // "[1, 3, 5]"
// Conversion representing associative array with string
int[string] associativeArray = ["0":1, "1":2];
assert(to!string(associativeArray) == `["0":1, "1":2]` ||
to!string(associativeArray) == `["1":2, "0":1]`);
// char* to string conversion
writeln(to!string(cast(char*)null)); // ""
writeln(to!string("foo\0".ptr)); // "foo"
// Conversion reinterpreting void array to string
auto w = "abcx"w;
const(void)[] b = w;
writeln(b.length); // 8
auto c = to!(wchar[])(b);
writeln(c); // "abcx"
Rounded conversion from floating point to integral.
Rounded conversions do not work with non-integral target types.
writeln(roundTo!int(3.14)); // 3 writeln(roundTo!int(3.49)); // 3 writeln(roundTo!int(3.5)); // 4 writeln(roundTo!int(3.999)); // 4 writeln(roundTo!int(-3.14)); // -3 writeln(roundTo!int(-3.49)); // -3 writeln(roundTo!int(-3.5)); // -4 writeln(roundTo!int(-3.999)); // -4 writeln(roundTo!(const int)(to!(const double)(-3.999))); // -4
The parse family of functions works quite like the to family, except that:
to instead.)This overload converts a character input range to a bool.
| Target | the type to convert to |
Source source
| the lvalue of an input range |
bool ConvException if the range does not represent a bool. to are forwarded to parse and do not require lvalues.auto s = "true"; bool b = parse!bool(s); assert(b);
Parses a character input range to an integral value.
| Target | the integral type to convert to |
Source s
| the lvalue of an input range |
Target ConvException If an overflow occurred during conversion or if no character of the input was meaningfully converted.string s = "123";
auto a = parse!int(s);
writeln(a); // 123
// parse only accepts lvalues
static assert(!__traits(compiles, parse!int("123")));
import std.string : tr; string test = "123 \t 76.14"; auto a = parse!uint(test); writeln(a); // 123 assert(test == " \t 76.14"); // parse bumps string test = tr(test, " \t\n\r", "", "d"); // skip ws writeln(test); // "76.14" auto b = parse!double(test); writeln(b); // 76.14 writeln(test); // ""
Takes a string representing an enum type and returns that type.
| Target | the enum type to convert to |
Source s
| the lvalue of the range to parse |
enum of type Target ConvException if type Target does not have a member represented by s.enum EnumType : bool { a = true, b = false, c = a }
auto str = "a";
writeln(parse!EnumType(str)); // EnumType.a
Parses a character range to a floating point number.
| Target | a floating point type |
Source source
| the lvalue of the range to parse |
Target ConvException if source is empty, if no number could be parsed, or if an overflow occurred.import std.math : approxEqual; auto str = "123.456"; assert(parse!double(str).approxEqual(123.456));
Parsing one character off a range returns the first element and calls popFront.
| Target | the type to convert to |
Source s
| the lvalue of an input range |
Target ConvException if the range is empty.auto s = "Hello, World!"; char first = parse!char(s); writeln(first); // 'H' writeln(s); // "ello, World!"
Parsing a character range to typeof(null) returns null if the range spells "null". This function is case insensitive.
| Target | the type to convert to |
Source s
| the lvalue of an input range |
null ConvException if the range doesn't represent null.import std.exception : assertThrown; alias NullType = typeof(null); auto s1 = "null"; assert(parse!NullType(s1) is null); writeln(s1); // "" auto s2 = "NUll"d; assert(parse!NullType(s2) is null); writeln(s2); // "" auto m = "maybe"; assertThrown!ConvException(parse!NullType(m)); assert(m == "maybe"); // m shouldn't change on failure auto s = "NULL"; assert(parse!(const NullType)(s) is null);
Parses an array from a string given the left bracket (default '['), right bracket (default ']'), and element separator (by default ','). A trailing separator is allowed.
Source s
| The string to parse |
dchar lbracket
| the character that starts the array |
dchar rbracket
| the character that ends the array |
dchar comma
| the character that separates the elements of the array |
Target
auto s1 = `[['h', 'e', 'l', 'l', 'o'], "world"]`; auto a1 = parse!(string[])(s1); writeln(a1); // ["hello", "world"] auto s2 = `["aaa", "bbb", "ccc"]`; auto a2 = parse!(string[])(s2); writeln(a2); // ["aaa", "bbb", "ccc"]
Parses an associative array from a string given the left bracket (default '['), right bracket (default ']'), key-value separator (default ':'), and element seprator (by default ',').
Source s
| the string to parse |
dchar lbracket
| the character that starts the associative array |
dchar rbracket
| the character that ends the associative array |
dchar keyval
| the character that associates the key with the value |
dchar comma
| the character that separates the elements of the associative array |
Target
auto s1 = "[1:10, 2:20, 3:30]"; auto aa1 = parse!(int[int])(s1); writeln(aa1); // [1:10, 2:20, 3:30] auto s2 = `["aaa":10, "bbb":20, "ccc":30]`; auto aa2 = parse!(int[string])(s2); writeln(aa2); // ["aaa":10, "bbb":20, "ccc":30] auto s3 = `["aaa":[1], "bbb":[2,3], "ccc":[4,5,6]]`; auto aa3 = parse!(int[][string])(s3); writeln(aa3); // ["aaa":[1], "bbb":[2, 3], "ccc":[4, 5, 6]]
Convenience functions for converting one or more arguments of any type into text (the three character widths).
writeln(text(42, ' ', 1.5, ": xyz")); // "42 1.5: xyz"c writeln(wtext(42, ' ', 1.5, ": xyz")); // "42 1.5: xyz"w writeln(dtext(42, ' ', 1.5, ": xyz")); // "42 1.5: xyz"d
The octal facility provides a means to declare a number in base 8. Using octal!177 or octal!"177" for 127 represented in octal (same as 0177 in C).
The rules for strings are the usual for literals: If it can fit in an int, it is an int. Otherwise, it is a long. But, if the user specifically asks for a long with the L suffix, always give the long. Give an unsigned iff it is asked for with the U or u suffix. Octals created from integers preserve the type of the passed-in integral.
parse for parsing octal strings at runtime.// same as 0177 auto x = octal!177; // octal is a compile-time device enum y = octal!160; // Create an unsigned octal auto z = octal!"1_000_000u";
Given a pointer chunk to uninitialized memory (but already typed as T), constructs an object of non-class type T at that address. If T is a class, initializes the class reference to null.
chunk).static struct S
{
int i = 42;
}
S[2] s2 = void;
emplace(&s2);
assert(s2[0].i == 42 && s2[1].i == 42);
interface I {}
class K : I {}
K k = void;
emplace(&k);
assert(k is null);
I i = void;
emplace(&i);
assert(i is null);
Given a pointer chunk to uninitialized memory (but already typed as a non-class type T), constructs an object of type T at that address from arguments args. If T is a class, initializes the class reference to args[0].
This function can be @trusted if the corresponding constructor of T is @safe.
chunk).int a; int b = 42; writeln(*emplace!int(&a, b)); // 42
Given a raw memory area chunk (but already typed as a class type T), constructs an object of class type T at that address. The constructor is passed the arguments Args.
If T is an inner class whose outer field can be used to access an instance of the enclosing class, then Args must not be empty, and the first member of it must be a valid initializer for that outer field. Correct initialization of this field is essential to access members of the outer class inside T methods.
@safe if the corresponding constructor of T is @safe. () @safe {
class SafeClass
{
int x;
@safe this(int x) { this.x = x; }
}
auto buf = new void[__traits(classInstanceSize, SafeClass)];
auto support = (() @trusted => cast(SafeClass)(buf.ptr))();
auto safeClass = emplace!SafeClass(support, 5);
writeln(safeClass.x); // 5
class UnsafeClass
{
int x;
@system this(int x) { this.x = x; }
}
auto buf2 = new void[__traits(classInstanceSize, UnsafeClass)];
auto support2 = (() @trusted => cast(UnsafeClass)(buf2.ptr))();
static assert(!__traits(compiles, emplace!UnsafeClass(support2, 5)));
static assert(!__traits(compiles, emplace!UnsafeClass(buf2, 5)));
}();
Given a raw memory area chunk, constructs an object of class type T at that address. The constructor is passed the arguments Args.
If T is an inner class whose outer field can be used to access an instance of the enclosing class, then Args must not be empty, and the first member of it must be a valid initializer for that outer field. Correct initialization of this field is essential to access members of the outer class inside T methods.
chunk must be at least as large as T needs and should have an alignment multiple of T's alignment. (The size of a class instance is obtained by using _traits(classInstanceSize, T)). @trusted if the corresponding constructor of T is @safe. static class C
{
int i;
this(int i){this.i = i;}
}
auto buf = new void[__traits(classInstanceSize, C)];
auto c = emplace!C(buf, 5);
writeln(c.i); // 5
Given a raw memory area chunk, constructs an object of non-class type T at that address. The constructor is passed the arguments args, if any.
chunk must be at least as large as T needs and should have an alignment multiple of T's alignment. @trusted if the corresponding constructor of T is @safe. struct S
{
int a, b;
}
auto buf = new void[S.sizeof];
S s;
s.a = 42;
s.b = 43;
auto s1 = emplace!S(buf, s);
assert(s1.a == 42 && s1.b == 43);
Returns the corresponding unsigned value for x (e.g. if x has type int, it returns cast(uint) x). The advantage compared to the cast is that you do not need to rewrite the cast if x later changes type (e.g from int to long).
Note that the result is always mutable even if the original type was const or immutable. In order to retain the constness, use std.traits.Unsigned.
import std.traits : Unsigned; immutable int s = 42; auto u1 = unsigned(s); //not qualified static assert(is(typeof(u1) == uint)); Unsigned!(typeof(s)) u2 = unsigned(s); //same qualification static assert(is(typeof(u2) == immutable uint)); immutable u3 = unsigned(s); //explicitly qualified
Returns the corresponding signed value for x (e.g. if x has type uint, it returns cast(int) x). The advantage compared to the cast is that you do not need to rewrite the cast if x later changes type (e.g from uint to ulong).
Note that the result is always mutable even if the original type was const or immutable. In order to retain the constness, use std.traits.Signed.
import std.traits : Signed; immutable uint u = 42; auto s1 = signed(u); //not qualified static assert(is(typeof(s1) == int)); Signed!(typeof(u)) s2 = signed(u); //same qualification static assert(is(typeof(s2) == immutable int)); immutable s3 = signed(u); //explicitly qualified
Returns the representation of an enumerated value, i.e. the value converted to the base type of the enumeration.
enum A { a = 42 }
static assert(is(typeof(A.a.asOriginalType) == int));
writeln(A.a.asOriginalType); // 42
enum B : double { a = 43 }
static assert(is(typeof(B.a.asOriginalType) == double));
writeln(B.a.asOriginalType); // 43
A wrapper on top of the built-in cast operator that allows one to restrict casting of the original type of the value.
A common issue with using a raw cast is that it may silently continue to compile even if the value's type has changed during refactoring, which breaks the initial assumption about the cast.
| From | The type to cast from. The programmer must ensure it is legal to make this cast. |
// Regular cast, which has been verified to be legal by the programmer:
{
long x;
auto y = cast(int) x;
}
// However this will still compile if 'x' is changed to be a pointer:
{
long* x;
auto y = cast(int) x;
}
// castFrom provides a more reliable alternative to casting:
{
long x;
auto y = castFrom!long.to!int(x);
}
// Changing the type of 'x' will now issue a compiler error,
// allowing bad casts to be caught before it's too late:
{
long* x;
static assert(
!__traits(compiles, castFrom!long.to!int(x))
);
// if cast is still needed, must be changed to:
auto y = castFrom!(long*).to!int(x);
}
| To | The type to cast to. |
T value
| The value to cast. It must be of type From, otherwise a compile-time error is emitted. |
Converts a hex literal to a string at compile time.
Takes a string made of hexadecimal digits and returns the matching string by converting each pair of digits to a character. The input string can also include white characters, which can be used to keep the literal string readable in the source code.
The function is intended to replace the hexadecimal literal strings starting with 'x', which could be removed to simplify the core language.
| hexData | string to be converted. |
string, a wstring or a dstring, according to the type of hexData.// conversion at compile time auto string1 = hexString!"304A314B"; writeln(string1); // "0J1K" auto string2 = hexString!"304A314B"w; writeln(string2); // "0J1K"w auto string3 = hexString!"304A314B"d; writeln(string3); // "0J1K"d
Convert integer to a range of characters. Intended to be lightweight and fast.
| radix | 2, 8, 10, 16 |
| Char | character type for output |
| letterCase | lower for deadbeef, upper for DEADBEEF |
T value
| integer to convert. Can be uint or ulong. If radix is 10, can also be int or long. |
import std.algorithm.comparison : equal;
assert(toChars(1).equal("1"));
assert(toChars(1_000_000).equal("1000000"));
assert(toChars!(2)(2U).equal("10"));
assert(toChars!(16)(255U).equal("ff"));
assert(toChars!(16, char, LetterCase.upper)(255U).equal("FF"));
© 1999–2019 The D Language Foundation
Licensed under the Boost License 1.0.
https://dlang.org/phobos/std_conv.html