double riemann_zeta( double arg ); float riemann_zeta( float arg ); long double riemann_zeta( long double arg ); float riemann_zetaf( float arg ); long double riemann_zetal( long double arg ); | (1) | (since C++17) |
double riemann_zeta( IntegralType arg ); | (2) | (since C++17) |
double
.arg | - | value of a floating-point or integral type |
If no errors occur, value of the Riemann zeta function of arg
, ζ(arg), defined for the entire real axis:
1 |
1-21-arg |
πarg |
2 |
Errors may be reported as specified in math_errhandling.
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
#include <cmath> #include <iostream> int main() { // spot checks for well-known values std::cout << "ζ(-1) = " << std::riemann_zeta(-1) << '\n' << "ζ(0) = " << std::riemann_zeta(0) << '\n' << "ζ(1) = " << std::riemann_zeta(1) << '\n' << "ζ(0.5) = " << std::riemann_zeta(0.5) << '\n' << "ζ(2) = " << std::riemann_zeta(2) << ' ' << "(π²/6 = " << std::pow(std::acos(-1),2)/6 << ")\n"; }
Output:
ζ(-1) = -0.0833333 ζ(0) = -0.5 ζ(1) = inf ζ(0.5) = -1.46035 ζ(2) = 1.64493 (π²/6 = 1.64493)
Weisstein, Eric W. "Riemann Zeta Function." From MathWorld--A Wolfram Web Resource.
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/special_math/riemann_zeta