double legendre( unsigned int n, double x ); float legendre( unsigned int n, float x ); long double legendre( unsigned int n, long double x ); float legendref( unsigned int n, float x ); long double legendrel( unsigned int n, long double x ); | (1) | (since C++17) |
double legendre( unsigned int n, IntegralType x ); | (2) | (since C++17) |
double
.n | - | the degree of the polynomial |
x | - | the argument, a value of a floating-point or integral type |
n
unassociated Legendre polynomial of x
, that is \(\mathsf{P}_n(x) = \frac{1}{2^n n!} \frac{\mathsf{d}^n}{\mathsf{d}x^n} (x^2-1)^n \)1 |
2n n! |
dn |
dxn |
Errors may be reported as specified in math_errhandling.
n
is greater or equal than 128, the behavior is implementation-defined Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
The first few Legendre polynomials are:
1 |
2 |
1 |
2 |
1 |
8 |
#include <cmath> #include <iostream> double P3(double x) { return 0.5*(5*std::pow(x,3) - 3*x); } double P4(double x) { return 0.125*(35*std::pow(x,4)-30*x*x+3); } int main() { // spot-checks std::cout << std::legendre(3, 0.25) << '=' << P3(0.25) << '\n' << std::legendre(4, 0.25) << '=' << P4(0.25) << '\n'; }
Output:
-0.335938=-0.335938 0.157715=0.157715
(C++17)(C++17)(C++17) | Laguerre polynomials (function) |
(C++17)(C++17)(C++17) | Hermite polynomials (function) |
Weisstein, Eric W. "Legendre Polynomial." From MathWorld--A Wolfram Web Resource.
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/special_math/legendre