double laguerre( unsigned int n, double x ); float laguerre( unsigned int n, float x ); long double laguerre( unsigned int n, long double x ); float laguerref( unsigned int n, float x ); long double laguerrel( unsigned int n, long double x ); | (1) | (since C++17) |
double laguerre( unsigned int n, IntegralType x ); | (2) | (since C++17) |
double
.n | - | the degree of the polymonial, a value of unsigned integer type |
x | - | the argument, a value of a floating-point or integral type |
x
, that is ex |
n! |
dn |
dxn |
Errors may be reported as specified in math_errhandling.
x
is negative, a domain error may occur n
is greater or equal than 128, the behavior is implementation-defined Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
The Laguerre polynomials are the polynomial solutions of the equation xy,,
+(1-x)y,
+ny = 0.
The first few are:
1 |
2 |
1 |
6 |
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1 #include <cmath> #include <iostream> double L1(double x) { return -x + 1; } double L2(double x) { return 0.5*(x*x-4*x+2); } int main() { // spot-checks std::cout << std::laguerre(1, 0.5) << '=' << L1(0.5) << '\n' << std::laguerre(2, 0.5) << '=' << L2(0.5) << '\n'; }
Output:
0.5=0.5 0.125=0.125
(C++17)(C++17)(C++17) | associated Laguerre polynomials (function) |
Weisstein, Eric W. "Laguerre Polynomial." From MathWorld--A Wolfram Web Resource.
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/special_math/laguerre