double beta( double x, double y ); float betaf( float x, float y ); long double betal( long double x, long double y ); | (1) | (since C++17) |
Promoted beta( Arithmetic x, Arithmetic y ); | (2) | (since C++17) |
double
. If any argument is long double
, then the return type Promoted
is also long double
, otherwise the return type is always double
.x, y | - | values of a floating-point or integral type |
x
and y
, that is ∫1Γ(x)Γ(y) |
Γ(x+y) |
Errors may be reported as specified in math_errhandling.
x
and y
are greater than zero, and is allowed to report a domain error otherwise. Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
beta(x, y)
equals beta(y, x)
When x
and y
are positive integers, beta(x,y) equals \(\frac{(x-1)!(y-1)!}{(x+y-1)!}\).
(x-1)!(y-1)! |
(x+y-1)! |
Binomial coefficients can be expressed in terms of the beta function: \(\binom{n}{k} = \frac{1}{(n+1)B(n-k+1,k+1)}\).
1 |
(n+1)Β(n-k+1,k+1) |
#include <cmath> #include <string> #include <iostream> #include <iomanip> double binom(int n, int k) { return 1/((n+1)*std::beta(n-k+1,k+1)); } int main() { std::cout << "Pascal's triangle:\n"; for(int n = 1; n < 10; ++n) { std::cout << std::string(20-n*2, ' '); for(int k = 1; k < n; ++k) std::cout << std::setw(3) << binom(n,k) << ' '; std::cout << '\n'; } }
Output:
Pascal's triangle: 2 3 3 4 6 4 5 10 10 5 6 15 20 15 6 7 21 35 35 21 7 8 28 56 70 56 28 8 9 36 84 126 126 84 36 9
(C++11)(C++11)(C++11) | gamma function (function) |
Weisstein, Eric W. "Beta Function." From MathWorld--A Wolfram Web Resource.
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/special_math/beta