Defined in header <complex> | ||
---|---|---|
template< class T > complex<T> pow( const complex<T>& x, const complex<T>& y); | (1) | |
template< class T > complex<T> pow( const complex<T>& x, const T& y); | (2) | |
template< class T > complex<T> pow( const T& x, const complex<T>& y); | (3) | |
template< class T, class U > complex</*Promoted*/> pow( const complex<T>& x, const complex<U>& y); | (4) | (since C++11) |
template< class T, class U > complex</*Promoted*/> pow( const complex<T>& x, const U& y); | (5) | (since C++11) |
template< class T, class U > complex</*Promoted*/> pow( const T& x, const complex<U>& y); | (6) | (since C++11) |
x
raised to a complex power y
with a branch cut along the negative real axis for the first argument. 4-6) Additional overloads are provided for all arithmetic types, such that
| (since C++11) |
x | - | base as a complex value |
y | - | exponent as a complex value |
If no errors occur, the complex power xy
, is returned.
Errors and special cases are handled as if the operation is implemented by std::exp(y*std::log(x))
.
The result of std::pow(0, 0)
is implementation-defined.
#include <iostream> #include <complex> int main() { std::cout << std::fixed; std::complex<double> z(1, 2); std::cout << "(1,2)^2 = " << std::pow(z, 2) << '\n'; std::complex<double> z2(-1, 0); // square root of -1 std::cout << "-1^0.5 = " << std::pow(z2, 0.5) << '\n'; std::complex<double> z3(-1, -0.0); // other side of the cut std::cout << "(-1, -0)^0.5 = " << std::pow(z3, 0.5) << '\n'; std::complex<double> i(0, 1); // i^i = exp(-pi/2) std::cout << "i^i = " << std::pow(i, i) << '\n'; }
Output:
(1,2)^2 = (-3.000000,4.000000) -1^0.5 = (0.000000,1.000000) (-1, -0)^0.5 = (0.000000,-1.000000) i^i = (0.207880,0.000000)
complex square root in the range of the right half-plane (function template) |
|
(C++11)(C++11) | raises a number to the given power (xy) (function) |
applies the function std::pow to two valarrays or a valarray and a value (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/cpp/numeric/complex/pow